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 Breast cancer is one of the major causes of death among women all over the 

world. The most frequently used diagnosis tool to detect breast cancer is 

ultrasound. However, to segment the breast ultrasound images is a difficult 

thing. Some studies show that the active contour models have been proved to 

be the most successful methods for medical image segmentation. The level 

set method is a class of curve evolution methods based on the geometric 

active contour model. Morphological operation describes a range of image 

processing technique that deal with the shape of features in an image. 

Morphological operations are applied to remove imperfections that 

introduced during segmentation. In this paper, we have evaluated three level 

set methods that combined with morphological operations to segment the breast 

lesions. The level set methods that used in our research are the Chan Vese (C-

V) model, the Selective Binary and Gaussian Filtering Regularized Level Set 

(SBGFRLS) model and the Distance Regularized Level Set Evolution 

(DRLSE) model. Furthermore, to evaluate the method, we compared the 

segmented breast lesion that obtained by each method with the lesion that 

obtained manually by radiologists. The evaluation is done by four metrics: 

Dice Similarity Coefficient (DSC), True-Positive Ratio (TPR), True-

Negative Ratio (TNR), and Accuracy (ACC). Our experimental results with 

30 breast ultrasound images showed that the C-V model that combined with 

morphological operations have better performance than the other two 

methods according to mean value of DSC metrics. 
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1. INTRODUCTION  

Breast cancer is one of the leading causes of death among women both in developed countries and 

in developing countries [1]. The early detection can reduce the death rate and helpful the treatment of breast 

cancer [2]. However, early detection requires an accurate and reliable diagnosis that be able to distinguish 

benign and malignant lesions, where imaging techniques play an important task [3]. One of the most 

frequently used diagnosis tools to detect breast cancer is ultrasound [4]. 

Ultrasound image segmentation is a difficult task because these images contain strong speckle noise 

and attenuation artifacts [5]. Several studies show that the active contour models have been proved to be the 

most successful methods for image segmentation [6]. The basic idea of the active contour model is to develop 

a curves under some constraints to extract the desired object [7]. There are two types of active contour 

models: parametric active contour models and geometric active contour models [8]. The difference of 
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parametric active contour models and geometric active contour models is that the former represent curves 

and surfaces explicitly in their parametric forms, but the latter represent curves and surfaces implicitly [9]. 

Geometric active contour models have many advantages over parametric active contour models, 

such as computational simplicity and the ability to change curve topology during deformation [9]. The level 

set method is a class of curve evolution method based on the geometric active contour models, which this 

method introduced by Osher-Sethian that overcame the problems of the associated with classical energy 

minimization approaches [9]. The basic idea of the level set method is to represent a contour as the zero level 

set of a higher dimensional function, called a level set function (LSF), and formulate the motion of the 

contour as the evolution of the level set function [10]. A desirable advantage of the level set method is that 

they can represent contours of complex topology and are able to handle topological changes, such as splitting 

and merging, in a natural and efficient way, which is not allowed in parametric active contour models [10]. 

In this paper, we compared three level set methods that combined with morphological operations for 

automatic segmentation of breast ultrasound images. Three level set models used in this paper are the Chan Vese 

(C-V) model [11], the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model [7] 

and the Distance Regularized Level Set Evolution (DRLSE) model [10]. Furthermore, to evaluated the methods, 

we compared the segmented breast lesion that obtained by each method with the lesion that obtained 

manually by radiologists using area-based segmentation assessment metrics. 

 

 

2. RESEARCH METHOD  

Tumor area on breast ultrasound images obtained by means perform the segmentation process. 

Intake of the tumor area should be done properly, because the contour of segmentation result is very establish 

the truth of the grouping process the types of tumors. Therefore, we need to measure the accuracy of the 

segmentation methods that used in this research. This is done by performing validation of the segmentation 

method proposed or Region of Interest (ROI) images against the segmentation manually by an experienced 

radiologist or Ground Truth (GT) image. The research stages in this paper are shown by a research scheme in 

Figure 1.  

 

 

 
 

Figure 1. Scheme of the Research Stages 

 

 

Based on Figure 1, we can conclude that this research is divided into two stages. The first stage is 

the segmentation of the breast ultrasound image and the second stage is validation the results of segmentation 

method. The first stage begins with a segmentation process of breast ultrasound images using level set 

algorithm. The next process is the application of morphological operations to the image of the results of level 

set method. This segmentation process will produce the Region of Interest (ROI) image. Then in the 

ultrasound images also done segmentation manually that produced the Ground Truth (GT) image. The 

validation process is done by comparing the ROI image with the GT image using area-based segmentation 

assessment metrics method. 

 

2.1.  Segmentation Methods 

Image segmentation is a process of dividing the image into several areas homogeneous based on 

certain similarity criteria such as intensity, color and texture [12]. The automatic segmentation process is a 
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necessary step in analysis of medical images. However, the accurate and reliable segmentation methods are a 

key requirement for the extraction of qualitative or quantitative information from images [13]. In this 

research, to segment the breast lesion we used three methods based on level set that each method combined 

with morphological operations. Three level set models used in this paper are the Chan Vese model, the 

Selective Binary and Gaussian Filtering Regularized Level Set model and the Distance Regularized Level Set 

Evolution model. 

 

2.1.1.  Chan Vese Model 

Chan and Vese proposed a region-based active contour models which is a special case of Mumford-

Shah formulation to handle problems of edge-based active contour models [1]. Let   is a domain for a given 

image  yxI , , they represented a contour C implicitly through Lipschitz function   :, yx that 

defined as follows: 
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Segmentation using Chan Vese (C-V) model is done by minimizing an energy function [7]. The 

formula function this energy expressed by using Heaviside function that defined in Equation 2 and Dirac 

function that defined in Equation 3. 
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Furthermore, Chan and Vese formulate energy function that shown by the formula [9]: 
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where 𝜇 ≥ 0, v0, 10, 20, are fixed parameters,  controls the smoothness of zero level set, v increases 

the propagation speed, 1control the image data driven force inside, 2 control the image data driven force 

outside the contour,  is the gradient operator, c1 is is the average intensities inside the contour that 

represented in Equation (5), and c2 is the average intensities outside the contour that represented in  

Equation 6 [7]. 

 

 
    

  








dxdyyxH

dxdyyxHyxI
c

,

,,
1




  (5) 

 

 
     

    

 






dxdyyxH

dxdyyxHyxI
c

,1

,1,
2




  (6) 

 

By incorporating the length and area energy terms into Equation 4 and minimizing them, the corresponding 

variational level set formulation is as follows [7]: 
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2.1.2.  Selective Binary and Gaussian Filtering Regularized Level Set Model 

Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model utilizes the 

advantages of both edge-based active contour models and region-based active contour models [14].  

Edge-based models use image gradients to construct an Edge Stopping Function (ESF) to stop the contour 

evolution on the object boundaries [7]. In SBGFRLS model has been developed a region based Singed 

Pressure Force (SPF) function to substitute the ESF, which is able to control the direction of evolution [7]. 

The SPF function has opposite signs (range of SPF function is [-1 1]) around the boundaries of the object, so 

the contour can expand when it is inside the boundary and can shrinks when it is outside the boundary [7]. 

The SPF function in this model is defined by the formula [14]: 
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with c1and c2 
are expressed in Equation 5 and Equation 6, respectively. 

Then by substituting SPF function into the Equation 5, we obtained the level set formulation that 

defined as [14]: 
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is unnecessary because Gaussian filter can be utilized to smooth the level set 

function to keep the interface regular. Beside that, the termspf   can be removed because the method 

utilizes the statistical information of the regions. Thus the final level set model is given by the formula [14]: 

 

 (10) 

 

2.1.3.  Distance Regularized Level Set Evolution Model 

The problem of traditional level set method is high computational cost which caused use 

reinitialization. Li et al. proposed a level set method without reinitialization by integrating a penalty term into 

the energy functional [2]. More recently, by adding a distance regularization term into energy functional, Li 

et al. presented a novel distance regularized level set evolution method, that is, Distance Regularized Level 

Set Evolution (DRLSE) model [2]. This model can not only completely eliminate the need for reinitialization 

but also avoid the undesirable side effect [2]. 

 Let Ω ⊂ 𝑅  be a bounded Lipschitz image domain. The energy functional 𝐸(⋅) is defined by the 

following function [2]: 
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with  pR  is the distance regularization term defined in Equation (12) and  extE is the external energy is written 

in Equation (13) [2]. 
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p
 
is the potential function for that defined in Equation 14 and g is an ESF such that   0lim  tgt , that 

defined in Equation 15 [2]. 
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where G 
is a Gaussian function with the standard deviation , I is a given 2D image, symbol * represent 

convolution, and |⋅| is the modulus of the smoothed image gradients [2]. 

The associated Euler-Lagrange equation, we obtained by minimizing function Equation 10 with 

respect to 𝜙 is defined as follows [2]: 

 

 (16) 

 

where    (⋅) is the divergence operator and pd is a function given by the formula [2]:  
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2.1.4.  Morphological Operations 

Morphological operation describes a range of image processing technique that deal with the shape of 

features in an image [4]. Morphological operations are applied to remove imperfections that introduced 

during segmentation. Two basic morphological operations are dilation and erosion. They are defined in terms 

of more elementary set operations, but are employed as the basic elements of many algorithms [15]. 
Dilation and erosion are produced by the interaction of a set called a structuring element (SE) with a set 

of pixels of interest in the image [15]. Let be a set of pixels and let a SE, then the morphological 

dilation of image  by the structuring element  is defined in Equation (18) and the morphological erosion of 

image  by the structuring element B is defined in Equation (19). The morphological dilation will expand the 

components of an image but and the morphological erosion will shrink them [4]. 
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Furthermore, dilation and erosion operations can be combined with each other. The combination of 

morphological operations that often used are opening and closing. The opening operations of image by SE

, is denoted , is defined in Equation 20. Which says the opening of image by SE is the erosion of 

image  by SE , followed by a dilation of the result by SE [12]. The opening operations generally 

smoothes the contour of an object, breaks narrow isthmutes, and eliminates thin protrusions [4]. 

The closing operations of image by SE , denoted , is defined in Equation 21. Which says 

the closing of image by SE is simply the dilation of image by SE , followed by the erosion of the 

result by SE [12]. The closing operations also tends to smooth sections of contours but, as opposed to 

opening, it generally fuses narrow breaks and long thin gulfs, eliminates small holes, and fills gaps in the 

contour [4]. 
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2.2.  Validation Methods  

 The proposed methods in this paper have been evaluated using area-based segmentation assessment 

metrics. Area-based segmentation assessment metrics measure the amount of area overlap between the 
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obtained segmentation and the Ground Truth. In the illustrated Figure 2, let A represented the segmented 

region to be assessed and M describe the manually delineated or GT reference region to be assessed, it will 

form 4 regions: True-Positive (TP), True Negative (TN), False-Positive (FP), and False Negative (FN). The 

TP area corresponds to the correctly segmented areas belonging to the lesion, the TN area corresponds to the 

correctly segmented areas belonging to the background of the image, the FP area corresponds to the areas 

wrongly labeled as a lesion since this areas don’t belong to the reference delineation, and the FN area 

corresponds to the areas of the true segmentation that have been missed by the segmentation under 

assessment [4]. 
  

 

 
 

Figure 2. Area representation of the performance in terms of area-based segmentation assessment metrics [4] 

 

 

Dice Similarity Coefficient (DSC) is a common similarity metric for representing the percentage or 

amount of area common to the assessed delineation A and the reference delineation M. Its value range 

between 0 (no overlap) and 1 (perfect agreement) [4]. The DSC metric is expressed by formula: 
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where   is the intersection operator and |⋅| represents the number of pixels in the corresponding pixel set. 

 

True-Positive Ratio (TPR) also known as sensitivity, corresponds to the amount of properly labeled 

pixels as lesion with respect to the amount of lesion pixels from the reference delineation [4]. The TPR 

metrics is expressed by formula:       

 

 (23) 

 

 True-Negative Ratio (TNR) also known as specificity, corresponds to the amount of background 

correctly labeled. The TNR metrics is expressed by formula: 

 

 (24) 

 

 Accuracy (ACC) quantifies the amount of properly labeled pixels as lesion with respect to the 

amount pixels both of assessed delineation and delineation . The ACC metrics is expressed by formula:   

 

 (25) 

 

 

3. RESULTS AND ANALYSIS  

This section describes the results of the implementation of the method proposed. The results of 

implementation consist of the segmentation results using the level set algorithm that combined with 

morphological operations and the validation results using area-based segmentation assessment metrics. 
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3.1.  Segmentation  

The test image used in this research comes from our breast ultrasound image database and the 

lesion’s contour is manually delineated by radiologists. This delineated area, denominated Ground Truth 

(GT) that used on validation process to evaluate the accuracy of segmentation methods proposed. Two of 30 

breast ultrasound images used in our research can be seen in Table 1. 

In Table 1 it can be seen two examples of ultrasound images that indicated there are the breast 

tumor. On the left column contain the ultrasound images with gray-scale image type, where the bubble black 

is a breast tumor. The images on the right column are the results of the breast tumor segmentation of the left 

images who done manually by the radiologists. The results of this manual segmentation are used as a 

comparison to the results of the segmentation of methods proposed in this study. 

The segmentation process in this research using three methods based on level set that each method 

combined with morphological operations. Three level set models that compared in this paper are the C-V 

model, the SBGFRLS model and the DRLSE model. Then the use of morphological operations in the three 

level set models aimed to obtain more accurate segmentation results. The examples of segmentation results of 

the three methods that proposed in this paper can be seen in Table 2. 

 
 

Table 1. Two samples of Breast Ultrasound Images in Data set 
Original image Ground truth 

  
 

 

 

 
 

 
 Table 2. Segmentation Results 

C-V model+ 
morphological operations 

SBGFRLS model+ 
morphological operations 

DRLSE model+ 
morphological operations 

     
 

  

 

 

 

 
 

 

We can see in Table 2 that the results of  this segmentation process in the form of binary image that 

divided into two, namely a white area is the breast lesion and black area is the background. This binary image 

is called the Region of Interest (ROI) image. In Table 2 it also can be seen that the results of the three 

methods proposed are significantly quite different. Then on the images of the segmentation results were done 

the validation process to see which method is more accurate. 

 

3.2.  Validation 

 Furthermore, the results of the segmentation process needs to be performed a validation process to 

ensure the accuracy of the segmentation method proposed. The validation process is done by comparing the 
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ROI image with the GT image by using area-based segmentation assessment metrics. In this validation 

process has been generated the value of similarity between the ROI image with the GT image. The summary 

results of the validation value from the 30 test images in this research can be seen in Table 3. 

Based on the results obtained in Table 3, we can summarize that the combination of the C-V model 

and morphological operations has a very good performance in term of segmentation breast lesion with Dice 

Similarity Coefficient (DSC) is 94% and True-Positive Ratio (TPR) is 94%, give the best than the others. 

However True-Negative Ratio (TNR) is worse than DRLSE model that combined with morphological 

operations and accuracy has a same with DRLSE model that combined with morphological operations. 

 

 
Table 3. Evaluation Metrics 

Methods Mean DSC 

(%) 

Mean TPR 

(%) 

Mean TNR 

(%) 

Mean ACC 

(%) 

C-V model+morphological operations 94 94 99 94 
SBGFRLS model+morphological operations 90 86 99 93 

DRLSE model+morphological operations 90 87 100 94 

 

 

4. CONCLUSION  

In this paper, we have presented a comprehensive comparison of three level set methods that 

combined with morphological operations for segmentation of breast ultrasound images. Three level set models 

used in this paper are the Chan Vese (C-V) model, the Selective Binary and Gaussian Filtering Regularized 

Level Set (SBGFRLS) model and the Distance Regularized Level Set Evolution (DRLSE) model. The 

performance evaluation of our methods were been demonstrated by the experimental results with used 30 

breast ultrasound images, which the lesion had been delineated manually by radiologists. The performance of 

C-V model that combined with morphological operations was significantly better than the other two methods. 

It was indicated from the average value of precision, which is 94% for Dice Similarity Coefficient (DSC) 

metric that much higher than the SBGFRLS model that combined with morphological operations (90%) and 

the DRLSE model that combined with morphological operations (90%). 
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