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 In the field of control engineering, approximating the higher-order system 
with its reduced model copes with more intricateproblems. These complex 
problems are addressed due to the usage of computing technologies and 
advanced algorithms. Reduction techniques enable the system from higher-
order to lower-order form retaining the properties of former even after 
reduction. This document renders a method for demotion of uncertain 
systems based on State Space Analysis. Numerical examples are illustrated to 
show the accuracy of the proposed method. Keyword: 
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1. INTRODUCTION 
In present time'sengineers and scientists are often with the analysis, design and synthesis of real time 

problems. The primary step to be followed is to develop a mathematical model which is an equivalent 

representation for the real problem.  

In general, these mathematical models possessedwith large dimensions and are named as large-scale 

systems. On the other hand, a highly detailed model would lead to a great deal of unnecessary complications. 

Hence forth a mechanism being applied to bring a compromisebetween the reduced model and original 

system so as to preserve the properties of the original system in its reduced model. The large-scale systems 

model reduction has two approaches like Time domain and Frequency domain. In frequency domain, 

continued fraction expansion method has low computational efforts and is applicable to multivariable 

systems, but the major drawback in this method is it does not preserve the stability after reduction [1]. 

Similarly in Time domain approach using routh approximation method, the steady state condition of the 
system is preserved, but it does not preserve the transient state of system [2].  

Reduction of continuous interval systems by routh approximation [3], and discrete interval systems 

by retention of dominant poles and direct series expansion method [4]. Based on study of stability and 

transient analysis of interval systems many methods have been proposed by the researchers on interval 

systems [5-9]. In this note the author extends the paper by reduction of interval systems in to state space form 

of realization using „Aggregation method‟. 

The outline of this note consists of four sections. In Section 2, Problem Statement will be is 

discussed. In Section 3, Procedural Steps for the proposed technique is explained. In Section 4, Error 

Analysis is done. In Section 5, the performance of the proposed method is shownby a numerical example. In 
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Section 6, comparisons between the proposed and other methods are illustrated. At last, a conclusion is stated 

in Section 7. 

 

 

2. PROBLEM STATEMENT 

Consider an original linear time invariant uncertain system in Controllable Canonical Form: 
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n=no. of state variables; m=no. of inputs variables; q=no. of outputs variables 

The Corresponding demoted order model of an uncertain system is represented in Controllable 

Canonical Form (CCF) as follows: 
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r=reduced order 

Hansen. E [10] explainedthe fundamental arithmetic rules for an interval plant as follows: 

Addition: 

 

[i, j]+ [o, v] = [i+o, j+v]                (3) 
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Subtraction: 

 

[i, j]- [o, v] = [i-o, j-v]              (4)                                

 

Multiplication: 

 

[i,j]×[o,v]=[min(io,iv,jo,jv),max(io,iv,jo,jv)]                                                                        (5) 

 
Division:                                                             

 
[   ]

[   ]
 [   ]    [

 

 
 
 

 
]                                               (6)            

 

 

3. PROCEDURAL STEPS 

Step 1: The equivalent transfer function for the original uncertain plant expressed in Equation 1 is:      
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where 
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Step 2: The above uncertain system is converted to four fixed transfer functions which carries the 

coefficients of Equation 7 this can be represented in its general form using Kharitonov‟s theorem [3] 

 

  ( )  
∑    
   
     

∑    
 
     

  (8) 

 

where         

 

e ≤ n-1; f ≤ n; p=1, 2, 3, 4 

 

Step 3: The above four transfer functions are transformed into four fixed state models: 

 

∑      [

              
     
             

]                                                                     (9) 

 

p=1, 2, 3, 4 

 

Step 4: Evaluate the Eigen values for the obtained four fixed state models represented in  

Equation 9 individually 

Step 5: Calculate the modal matrix (  ) is calculated for each individual state model: 

 

   [
      
      

]                                      (10) 

 

where 

 

p=1, 2, 3, 4   ;     (     )           (       ) 
 

Step 6: Now the inverse of modal matrix( ̅ ) is to be evaluated from                                                       
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 ̅  [
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where 

p=1, 2, 3, 4;   ̅   (   )      ̅   (       ) 
 

Step 7: Obtain the arbitrary matrix (   )followed by the Equation below: 

 

   
 [      (   )]        (12) 

 

Step 8: Determine the aggregation matrix „  ‟ using the Equation 

 

          ̅  (13) 

 

Step 9: Using the aggregation matrix the four reduced state models are obtained and are represented 

in generalized form as 
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p=1, 2, 3, 4; r = order of reduced system 

 

Step 10: The corresponding four reduced rth order transfer functions for the above obtained four 

reduced rth order state model expressed in Equation 14 in its general form: 
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where 

 

g≤ r-1; h ≤ r; p=1, 2, 3, 4; r = order of reduced system 

 

Step 11: Now the equivalent transfer function for reduced interval system is equated below:    
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Step 12: Finally the demoted model of the interval system is expressed in Controllable Canonical 

Form (CCF): 
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4. INTEGRAL AND RELATIVE INTEGRAL SQUARE ERROR 

The integral and relative integral square error between transient responses of original and reduced 

systems is also determined as formulated below: 

 

Relative ISE=∫ [ ( )   ( )] 
 

 
   ∫ [ ( )   ( )] 

 

 
  (18) 

 

ISE=∫ [ ( )   ( )] 
 

 
 dt 

 

where  ( ) and  ( ) are the unit step responses of original Q(s) and reduced R(s) systems,  ( ) final value of 

original system 
 

 

5. NUMERICAL ILLUSTRATION  

5.1. Example 1 

Let us consider an interval system having state model as followed below: 
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1.  The equivalent transfer function of an uncertain is as follows: 
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 (20) 

 

2.  Evaluate the four 3rd order transfer functions by using Kharitonov‟s theorem as expressed in Equation (8) 

3.  The above four transfer functions are converted into four state models by using Equation 9 are: 

 

∑      

[
 
 
 
 [
               
   
   

]  [
 
 
 
]

      
[         ]  [ ] ]

 
 
 
 

 (21) 

 

∑      

[
 
 
 
 [
           
   
   

]  [
 
 
 
]

      
[        ]  [ ] ]

 
 
 
 

 (22)         

 

∑      

[
 
 
 
 [
                   
   
   

]  [
 
 
 
]

      
[            ]  [ ] ]

 
 
 
 

 (23) 

 

∑      

[
 
 
 
 [
               
   
   

]  [
 
 
 
]

      
          ]  [ ] ]

 
 
 
 

 (24) 

 

4.  Next Eigen values are to be determined individually for the above four state models 

5.  Then modal matrix, inverse of modal matrix and        matrices are obtained for the four state models 

individually by using Equations 10 to 13 
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6.   Four reduced order state models are obtained from Equation 14 as given below: 
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5. The corresponding demoted order transfer functions are obtained as expressed in Equation 15 using four 

reduced state models from Equations 25 to 28 

6.  Thenthe equivalent reduced order transfer function for interval system is obtained as expressed in 

Equation 16: 
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Under steady state condition      then 
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7.  The CCF of the reduced order interval system 
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Step responses of both original and reduced 3rd order systems are shown in Figure 1 below 

 
 

 
 

Figure 1. Step Response of Original and Reduced 3
rd

 Order System using Proposed Method 
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6. COMPARSION OF METHODS 

The demoted order models of proposed method are compared with other methods are shown in 

Figure 2, 3 and 4. 

 

 

 
 

Figure 2. Step Response of Original and Reduced 3rd Order System using Mihailov and Cauer Second Form 

 

 

 
 

Figure 3. Step Response of Original and REDuced 3rd Order System using Routh and Factor Division 
Method 

 

 

 
 

Figure 4. Step Response of Original and Reduced 3rd Order System using Mihailov and Factor Division 

Method 
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Table 1 shows Comparison of Reduced Order Models for 3rd order system. 

 

 

Table 1. Comparison of Reduced Order Models for 3rd Order System 

S.no. Methods Reduced Order Systems 

 

Step Response of 

Lower Limit 

 

Step Response of 

Higher Limit 

ISE 

Values 

Relative 

ISE 

Values 

ISE 

Values 

Relative 

ISE 

Values 

1. 
Proposed   

Method 
 ( )  

[             ]  [              ]

[   ]   [           ]  [           ]
 0.012 0.070 0.009 0.066 

2. 

Mihailov 

and cauer 

second 

form 

 ( )  
[           ]  [           ]

[         ]   [           ]  [          ]
 0.014 0.086 0.025 0.157 

3. 

Routh and 

Factor 

Division 

Method 

 ( )  
[              ]  [               ]

[     ]   [               ]  [         ]
 0.344 2.152 0.007 0.042 

4. 

Mihailov 

and Factor 

Division 

Method 

 ( )

 
[               ]  [               ]

[               ]   [               ]  [               ]
 

0.457 2.833 0.623 3.856 

 

 

7. CONCLUSION 
To decrease the complexity of the system order reduction is done. In this note the order reduction by 

proposed method is numerically solved. The proposed method implemented for order reduction represented 

the uncertain systems in state model. The demoted model obtained by proposed method is compared with 

other methods, and the ISE & Relative ISE values of step response are also compared. Hence the proposed 

method maintains stability with low ISE values compared to other existing methods. 

 

 

REFERENCES 
[1] L. S. Shieh and M. J. Goldman, “Continued Fraction Expansion and Inversion of cauer third Form,” IEEE 

Trans.On Circuits and systems, vol/issue: CAS-21(3), pp. 341-345, 1974. 
[2] M. Chand, “Reducing Model Ordering using Routh Approximation Method,” International Journal of Emerging 

Technology and Advanced Engineering, vol/issue: 4(8), 2014. 
[3] Bandyopadhyay B., et al., “Routh pade approximation for interval systems,” IEEE Trans Autom Control, vol. 39, 

pp. 2454–2456, 1994. 
[4] C. Younseok, “A note on discrete interval system reduction via retention of dominant poles,” Int J Control Autom 

Syst, vol/issue: 5(2), pp. 208–211, 2007. 
[5] Saraswathi G., “A mixed method for order reduction of interval systems,” Int Conf IntelAdv. Syst, pp. 1042–1046, 

2007. 
[6] Ismail O. and Bandyopadhyay B., “Model order reduction of linear interval systems using pade approximation,” 

IEEE Int Symp Circ Syst, 1995. 
[7] Singh V. P. and Chandra D., “Routh approximation based model reduction using series expansion of interval 

systems,” IEEE Int Conf Power Control Embed Syst (ICPCES), vol. 1, pp. 1–4, 2010. 
[8] Singh V. P. and Chandra D., “Model reduction of discrete interval system using dominant poles retention and direct 

series expansion method,” in Proceedings of the IEEE 5th International power engineering and optimization 
conference (PEOCO), vol 1. pp. 27–30, 2011. 

[9] K. Kumar D, et al.. “Model order reduction of interval systems using modified routh approximation and factor 
division method,” in Proceedings of 35th national system conference (NSC), IIT Bhubaneswar, India, 2011. 

[10] Hansen E., “Interval arithmetic in matrix computations,” Part I Siam J Numer Anal, pp. 308–320, 1965. 
 
 
 

 
 
 
 
 
 
 
 



                ISSN: 2088-8708 

IJECE  Vol. 7, No. 1, February 2017 :  244 – 252 

252 

BIOGRAPHIES OF AUTHORS  

 

 

Gayatri Bogapurapu received B.Tech degree in Electrical and Electronics Engineering in the 
year 2014 from Simhadhri College of Engineering. She is now pursuing M.tech degree in the 
specialization of Power System Automation and Control in VITS College of Engineering, 
Visakhapatnam, India. 

 

 

 

 

Kiran Kumar Kalyana received B.Tech degree in Electrical and Electronics Engineering in the 
year 2001 from GMRIT Rajam, M.E degree in the specialization of Control Systems in the year 
2004 from AUCE, Andhra University, Ph.D degree in Electrical Engineering from A.U, 
Visakhapatnam in 2015. His research areas are control systems,interval systems,Non-linear 

systems,Adaptive control systems. He is a member of ISTE, IAENG(HK), IETE. 

 

 

Venkata Santosh Lakshmi Akella received B.Tech degree in Electrical and Electronics 
Engineering in the year 2013 from Nightingale Engineering College for Women. She is now 
pursuing M.tech degree in the specialization of Power System Automation and Control in VITS 
College of Engineering, Visakhapatnam, India. 

 

Sai Karteek Vyakaranam received B.Tech degree in Electrical and Electronics Engineering in 
the year 2014 from Sri Chaitanya College of Engineering. He is now pursuing M.tech degree in 
the specialization of Power System Automation and Control in VITS College of Engineering, 
Visakhapatnam, India. 

 

 


