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 This contribution puts forward a new voltage mode instrumentation amplifier 

(VMIA) based on operational floating current conveyor (OFCC). It presents 
high impedance at input terminals and provides output at low impedance 
making the proposal ideal for voltage mode operation. The proposed VMIA 
architecture has two stages - the first stage comprises of two OFCCs to sense 
input voltages and coverts the voltage difference to current while the second 
stage has single OFCC that converts the current to voltage. In addition it 
employs two resistors to provide gain and imposes no condition on the values 
of resistors. The behavior of the proposed structure is also analyzed for 

OFCC non idealities namely finite transimpedance and tracking error. The 
proposal is verified through SPICE simulations using CMOS based 
schematic of OFCC. Experimental results, by bread boarding it using 
commercially available IC AD844, are also included. 
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1. INTRODUCTION 

Design and development of analog signal processing and generating circuits using current mode 

(CM) building blocks has been mainstay for past few years. Current conveyor and its variants, being versatile 

CM building blocks, have been used extensively for these applications. The operational floating current 

conveyor (OFCC) [1]  is a variant of current conveyor with attractive features of both high and low 

impedance at input and output ports which make it suitable for sensing both currents and voltage and 

providing the sensed variable in form of current and voltage. The OFCC has been used to develop variable 
gain amplifier [1], basic amplifier circuits (voltage, current, transimpedance and transconductance) [2-4], 

filters [5-10], instrumentation amplifier [11], [12], readout circuits [13], logarithmic amplifier [14],  

rectifier [15], and wheatstone bridge [16] in recent past. 

This papers aims at presenting an instrumentation amplifier (IA) which is inevitably used in areas 

pertaining to industrial process control [17], automotive transducers [18], bio-potential acquisition  

systems [19-20] and linear position sensing [21], to suppress unwanted common mode noise and to amplify 

differential signals. In general, the IA structures are classified according to the active block used for 

realization or on the basis of type of input/output it processes/provides. Taking the later classification into 

consideration, the available IA may be viewed as voltage mode IA (VMIA), current mode IA (CMIA), 

transimpedance mode IA (TIMIA) and transadmittance mode IA (TAMIA). The available VMIAs [11], [12],  

[22-41] employ various active blocks and are compared on the basis of number and type of active block, 
numbers of resistors/capacitors, input and output impedance, as shown in Table 1. 

The findings are placed in Table 1 and following points are noted:  

a. The structures presented in [30], [31] use large number of active blocks while those reported in  

[12 Figure 4(a)], [22-24], [27], [39] employ many passive components. 
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b. The input impedance of all VMIAs is high while the output impedance of [11], [32-36], [38-41] is not 

appropriate therefore an additional active block would be needed to access the output. 

c. Though the active block count is less than or equal to three in [32-35], [38-41], but an additional active 

block is needed to access output. 

d. The VMIA [12 Figure 5(a)] uses three number of active blocks and resistors each and presents output at 

proper impedance level. 

e. Both VM and CM active blocks are employed in [29-31], [36], [37] therefore the bandwidth is governed 

by VM block.  

f. Component matching is needed in [12], [22-24], [27-31] for proper operation. 

 
 

Table 1. Characteristics of Available VMIA Circuits 

 * current mirrors, ** current subtractor 

 

 
It can be inferred from above discussion that the VMIA reported in [12 Figure 5(a)] uses least 

component count but requires component matching. The main motivation of this work is to present OFCC 

based VMIA that uses same active block count as [12 Figure 5(a)] and only two resistors without matching 

constraint.  

The paper is detailed in four Sections. Section 2 describes OFCC port relationship and proposed 

OFCC based VMIA topology. This Section also includes the behavior of proposed topology in presence of 

non-idealities namely finite transimpedance gain and tracking errors. The verification of theoretical 

predictions is done both through simulations and experimentation. The corresponding results are put forward 

in Section 3. The findings of the paper are concluded in Section 4. 

 

 

2. PROPOSED OFCC BASED VMIA 

2.1. Operational Floating Current Conveyor (OFCC) 

The OFCC has two inputs and two outputs and is represented by circuit symbol shown in Figure 1. 

The input ports Y and X (W and Z) is used respectively for sensing (providing) voltage and currents. The 

ports X and W have low impedance whereas ports Y and Z present high impedance. 

 

 

 

Ref. No. Active Block Used 
Resistors/ 

CapacitorsUsed 

Input 

impedance 

Output 

impedance 

[11] 2 OFCC 4 High High 

[12 Figure 4(a)] 4OFCC 10 High Low 

[12 Figure 5(a)] 3OFCC 3 High Low 

[22] 

[22] 

[22] 

2 opamps 

3 opamps 

4 opamps 

5 

7 

6 

High 

High 

High 

Low 

Low 

Low 

[23] 3 opamps 7 High Low 

[24] 3 opamps 7 High Low 

[25] 3 opamps 2 High Low 

[26] 4 opamps 6 High Low 

[27] 3 opamps 7 High Low 

[28] 5 opamps 5 High Low 

[29] 2 CCII+, 1 opamp 3 High Low 

[30] 6CCII+, 1opamp 3 High Low 

[31] 6CCII+, 1opamp 3, 1 capacitor High Low 

[32] 2 CCII+ 3 High High 

[33] 3 CCII+ 2 High High 

[34] 2 CCII+ 2 High High 

[35] 2 CCII+ 2 High High 

[36] 2CC, 2opamps 2 High High 

[37] 3 opamps, 2 cm*, 1 cs** 2, 1 capacitor High Low 

[38] 3 CCCII Nil High High 

[39] 2 OC 6 High High 

[40] 2CCCII 1 active resistor High High 

[41] 2CCII 2 High High 
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Figure 1. Electrical symbol of the OFCC 

 

 

The OFCC operation is based on the port relationship of (1): 

 

[

  
  
  
  

]  [

              
              
              
              

] [

  
  
  
  

] (1) 

 

Here, the term Zt represents open loop transimpedance and its value is very high, therefore feedback 

between W and X port is essential for developing any application. The frequency dependence of parameter Zt 

in (1) is represented using single pole model and is approximated as Zt (s) = 1/sCp at high frequencies where 

Cp = Ztoωtc (Zto represents open loop transimpedance gain and ωtc corresponds to its cut off frequency). The   

voltage and current transfers at X and Z ports have a multiplication factor of α and β. Ideal values of these 

factors are unity, however, in practice there is deviation from this value. The effect of non-ideal voltage and 

current transfers on circuit operation depends strongly on topology e. g. the performance of the circuit 
remains unaffected if the terminals whose behaviour is affected by non – ideal behaviour are not used in case 

of current terminal or corresponding voltage port is grounded. 

 

2.2. Proposed Topology 

The architecture of the proposed VMIA, as depicted in Figure 2, comprises of two stages. The first 

stage, comprises of two OFCCs and a current determining resistor R1, provides current proportional to input 

voltage difference (Vin1 - Vin2). A single OFCC (OFCC3) and a resistor are used in second stage which 

converts the current output of first stage to voltage. 

 

 

 
 

Figure 2. Proposed Instrumentation Amplifier 
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Using the port relationships of (1), voltages at nodes P and Q in Figure 2 are computed as 

 

          (2) 

          (3) 

 

which give current output (Iout) of the first stage as  

 

      
(             )

  
  ( )  (4) 

where    ( )  
  

        
.  

 

The third OFCC coverts Iout to output voltage (Vout). Routine analysis of the circuit gives Vout  as  

 

     (       )  ( ) (5) 

 

where   ( )  
  

        
. 

 

Substituting Iout in Equation (5) yields 

 

     
  

  
   (             )   ( )   ( ) (6) 

 
Representing Vin1 = VCM + Δ and Vin2 = VCM – Δ, differential mode gain (Ad) and common mode 

gain (ACM) are computed respectively as: 
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 (8) 

 

It is clear from Equation (8) that if the OFCCs are matched, the current output (Iout) would be zero 

for common mode input and would result in zero output voltage. There will be deviation from zero output if 

the OFCCs at input stage are not matched which are discussed in the following Section. Using Eqs. (7) and 

(8), the common mode rejection ratio (CMRR) is calculated as 

 

     
   

   
  

 (     )

 (     )
 (9) 

 

In practice, the values of β1 and β2 are close to unity, therefore the proposed topology can give a 

high value of CMRR. Considering α = 1, β1 =β2 =1 and frequencies much below (  (     )   (     )), 
Equation (7) reduces to 

 

   
     

  
 
  

  
  (10) 

 

It is clear from Equation (10) that no matching constraint is imposed on component values for 

obtaining differential gain. Comparing the proposed VMIA with available OFCC based VMIAs  

[12 Figure 5(a)] having similar input and output impedances, it is found that later uses equal resistors in first 

stage. 

 

 

3. SIMULATION AND EXPERIMENTAL RESULTS 

The proposal is examined through SPICE simulations wherein CMOS based schematic of OFCC of 

Figure 3 [1] is used. Model parameters of 0.5 µm technology from MOSIS (AGILENT) are used. The 

dimensions of various MOS transistors are given in Table 2. The supply voltages is taken as  

VDD = -VSS = 1.5V while the bias voltages of VB1 = -VB2 = 0.8V are considered. The passive components 

values are taken as R1 = 1 kΩ and R2 as 5 kΩ, 10 kΩ, 15 kΩ and 20 kΩ to obtain gain values of 14 dB,  

20 dB, 23.5 dB and 26 dB respectively. 
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Figure 3. Internal Structure of OFCC [1] 

 

 

Table 2 MOS transistors Dimensions of the OFCC Structure shown in Figure 3 [1] 

5.2/10013,9

5.2/408,6

5.2/2015,10,7,5

5.2/5014,12,11,4,3

1/502,1

)(/)(

MM

MM

MMMM

MMMMM

MM

mLmWTransistorMOS 

 
 

 

 
 

Figure 4. Gains of Proposed Topology with respect to Frequency 

 

 

 
 

Figure 5. CMRRs of Proposed Topology with respect to Frequency 
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Figure 6. Noise Analysis of Proposed Topology with respect to Frequency 

 

 

For validation of simulated observations the proposal is prototyped. The OFCC is realized with 

commercially available IC AD844AN [42] using the setup shown in Figure 7. Experimental observations are 

plotted for frequency response and CMRR as shown in Figure 8(a) and Figure 8(b) respectively. Output 
signal obtained through prototype for input signal at frequency of 100 kHz and 1 MHz is shown in  

Figure 9(a) and Figure 9(b) respectively for authentication. Figure 10(a) shows practical performance for 

sinusoidal, Figure 10(b) for square and Figure 10(c) for triangular input signals at frequency of 100 kHz each 

as a proof of the proposal. 

Various performance parameters such as CMRR, its bandwidth and CMRR gain bandwidth product 

(GBP), are compared for available references along with proposed topology parameters and are listed in 

Table 3. As the IAs given in [11], [12], [22-41] and the proposed one have been tested for different 

differential gains and at different power supply voltages, it is not fair to compare these on the basis of gain 

and power consumption. 

It is found that proposed VMIA outperforms in terms of both CMRR and its CMRR gain bandwidth 

product (GBP) as compared to OFCC based VM IA reported in [12 Figure 5 (a)]. As the data for CMRR 

bandwidth is not available for [22-26], [29-32], [34], [37], [39-41], the comparison of CMRR GBP for the 
proposed topology is best among all. 

 

 

 
 

Figure 7. Realization of OFCC using AD844AN 
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(a) Frequency Response 

 

(b) CMRR 

 

Figure 8. Simulated and Experimental Results. (a) Frequency Response and (b) CMRR 

 

 

  
 

(a) 

 

(b) 
 

Figure 9. Outputs (1.04 V each) Observed for Input (200 mV each) of (a) 100 kHz and (b) 1 MHz Frequency 

 

 

Table 3. Performance Parameters of Available and Proposed IA Circuits 

NA: Not available 

Ref. No. Mode CMRR (dB) 
- 3dB frequency 

(CMRR) 

Power Supply 

(Volts) 

Experimental Results 

available 

[11] VM 76 185 kHz NA Yes 

[12 Figure 4(a)] VM 81 148 kHz ±1.5 NA 

[12 Figure 5(a)] VM 56 525 kHz ±1.5 NA 

[22] VM 70-90 NA NA NA 

[23] VM NA NA NA Yes 

[24] VM NA NA NA NA 

[25] VM 80 NA NA Yes 

[26] VM >70 at 100 kHz NA NA Yes 

[27] VM 62 65 kHz 3.3 (single) NA 

[28] VM > 60 Upto 200 kHz NA NA 

[29] VM 50 NA NA Yes 

[30] VM 145 NA ±1.5 NA 

[31] VM 149 NA ±1.5 NA 

[32] VM 100 NA NA Yes 

[33] VM 95 65 kHz NA Yes 

[34] VM >70 at100 kHz NA NA NA 

[35] VM 95 2 kHz NA Yes 

[36] VM 55 10 kHz NA Yes 

[37] VM 130 NA ±2.5 Yes 

[38] VM 147 35 kHz ±2.5 NA 

[39] VM 120 NA NA Yes 

[40] VM 142 NA ±3.3 NA 

[41] VM NA NA NA Yes 

Proposed VM 93.11 423.69 kHz ±1.5 Yes 
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(a) Sinusoidal 

 

Ch1: 

 

Vout  = 1.04 V (p-p), 100 kHz 

R1 = 1kΩ, R2 = 5kΩ (gain = 14 dB). 

 

Ch2: 

 

Vin = 200 mV (p-p), 100 kHz 

Sinusoidal 

 
 

(b) Square 

 

Ch1: 

 

Vout  = 1.04 V (p-p), 100 kHz 

R1 = 1kΩ, R2 = 5kΩ (gain = 14 dB). 

 

Ch2: 

 

Vin = 200 mV (p-p), 100 kHz 

Square 

 
(c) Triangle 

 

Ch1: 

 

Vout  = 1.04 V (p-p), 100 KHz 

R1 = 1kΩ, R2 = 5kΩ (gain = 14 dB). 

 

Ch2: 

 

Vin = 200 mV (p-p), 100 kHz 

Triangle 

Figure 10. Experimental Results of the Proposed IA for (a) Sinusoidal (b) Square (c) Triangular Input 

 

 

4. CONCLUSION 

An OFCC based VMIA is proposed in this work that uses three OFCCs and two resistors. The input 

and output impedances of the proposal are high and low respectively therefore the structure can be used to 

sense signal from voltage sensor and interface output with system processing voltage signal. Effect of non 

idealities on behavior of proposal is included. Workability of the proposal is verified through SPICE 

simulations and experimentations. Comparison of the proposed VMIA with its available counterparts shows 

that it has highest CMRR GBP and has lowest component count. 
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