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 Current and voltage signals recieved from conventional iron core Current 
Transformer (CT) and Voltage Transformer plays very important role for 
correct operation of Distance Distance Relay (DDR). Increase in secondary 
burden connected to CT causes it to saturate at earlier stage. The saturated 
CT produces distorted secondary current, causing DDR to under reach and to 
operate by certain time delay. Rogowski Coils (RCs) are attaining increased 
acceptance and use in electrical power system due to their inherent linearity, 
greater accuracy and wide operating current range. This paper presents use of 

RC as an advanced measurement device suitable for DDR. Case study for 
validation of use of RC is carried out on low voltage system. The simulation 
results of Distance protection scheme used for protection of part of 220kV 
AC system shows excellent performance of RC over CT under abnormal 
conditions. 
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1. INTRODUCTION 

Power system is a complex interconnected network which consists of generation, transmission and 

distribution utilities. Short circuit and other eccentric conditions which occur in the power system called 

faults [1]. According to statistical data about 70 to 80% faults on transmission line are single line to ground 

faults [2]. The performance distance relays (DRs) used for protection of transmission line when a fault occurs 

in the system is important for improvements in the stability of the system and reduction of their effect on 

sensitive loads. Reducing the fault clearing time for more possible fault conditions is one of the main goals in 

the development, application and setting of such relays [3].  
Fault occurred on transmission line produce very large and abnormal currents in the power system. 

Traditionally normal and abnormal current measurement is accomplished with magnetic core Current 

Transformer (CT). CT produces reduced current accurately proportional to current which can be conveniently 

connected to measuring and recording instruments. But CT exposes a series of defects such as complex 

insulating structure, saturation potential and catastrophic failure due to secondary open [4].  

CT saturation cause distance relay to see lower effective current than they would see and causes 

them to reach a shorter distance than they would, if there were no CT saturation. This also causes the distance 

protection scheme to provide its trip decision with certain time delay [5]. To overcome this issue, a new 

measuring technique is required for measurement of current. 

In order to use microprocessor-based or numerical relays, more advanced instrument current 

transducers must be introduced for measurements [6-8]. Rogowski Coil (RC) has attracted much attention of 
electric power industry as it can meet the requirements of protective relaying due to its superior performance, 

inherent linearity, outstanding dynamic response, wide bandwidth and no magnetic saturation. The position of 

the primary conductor inside RC, magnetic field created by nearby conductors and harmonics will not create 
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any type of deviation in RC output [9], [10]. High degree of selectivity and characteristics of protections 

which require current measurements can be increased significantly in the protection system with the help of 

RC. So, RC can be considered as alternative to conventional current transformers for applications in harsh 

operation environments [11].  

So far RC is used as current transducer in differential and over current protection. This paper 

presents use of RC as a best alternative to conventional CT in 220 kV distance protection scheme. 

 

 

2. RESEARCH METHOD 

This paper gives the comparision of the performance of 220 kV distance protection scheme when CT 
and RC are used as current transducers. The stages involved while developing a distance protection scheme 

are shown in Figure 1. The fault created on an AC system produces current and voltage signals with some 

transients. The voltage signal is collected with the help VT and the current signal is collected with the help of 

RC, ideal CT and actual CT simultaneously. In order to get correct value of the line impedance up to fault 

point, it is very essential to remove the transients and retain signals with fundamental frequency. So these 

signals are further processed through signal processing stage which carries FFT module. FFT module helps to 

obtain current and voltage signals at fundamental frequency [12]. By using these current and voltage signals, 

apparent impedances (Zaps) are calculated. Finally these Zaps are fed to MDRs which compares these 

impedances with its setting and issues trip signal instantaneously or with some time delay. 

 

 

 
 

Figure 1. Distance Protection Scheme Stages 

 

 

2.1. Modelling of  220kV AC System 

The details of the 220 kV AC system (Figure 2) is given in Table 1. Line between bus A and bus B is 

protected by using MDR. The line AB is divided in two parts as TLine1 and TLine2 to obtain its Zone 1 

setting (Z1set). The line lengths of these two parts can be varied to create a fault inside and outside of Zone 1 
of line AB. Single line to ground (SLG) fault is created with the help of time fault logic [13].   

 

 

 
 

Figure 2. PSCAD model of  220kV AC System 
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Table 1. 220 kV AC System Details 
Parameter Specifications 

Source Voltage 220 kV, 50Hz 

Source Impedance 32.15∠85
0
Ω 

System MVA   100 MVA 

Length of AB 200 km 

Positive sequence impedance(per km) 0.2928∠86.57
0
 Ω 

Zero sequence Impedance (per km) 1.11∠74.09
0
 Ω 

Load (75+j25) MVA 

compensation factor 2.82 

 

 

2.2. Modeling of Actual Current Transformer  

The actual CT with the following specifications is used (Figure 3 & Table 2) [14]. 

 

 

 
 

Figure 3. Actual CT Model 

 

 
Table 2. CT Details 

Parameter Specifications 

CT ratio (CTR) 270/1 

Secondary winding Resistance (Rs) 0.5 Ω 

Secondary winding Inductance (Ls) 0.8mH 

Magnetic Core Area 2.6x10-3 mm2 

Magnetic Path Length 0.677mtr 

CT Burden (Zb) (0.5+j0.251) Ω 

 

 

2.3. Modelling of Ideal Current Transformer 

The primary current is divided by number of turns which have been considered in actual current 

transformer, to get ideal value of secondary current (Figure 4). 
 

 

 
 

Figure 4. Ideal CT Model 

 

 

2.4. Modelling of Rogowski Coil 

The RC module & integrator with the following specifications is used (Figure 5 & Table 3) [15-16]. 
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Figure 5. Rogowski Coil Model 

 
 

Table 3. Rogowski Coil Details 
Parameter Specifications Parameter Specifications 

Mutual Inductance 2 µH R of Integrator(Rint) 100 Ω 

L of Rogowski Coil 7.8 mH C of Integrator(Cint) 1 µF 

R of Rogowski Coil 186 Ω No of turns 270 

C of Rogowski Coil 235  pF Output RMS 100mV/1 kA 

Z of Rogowski Coil 2 k Ω Rated Current 100kA 

 

 

3. RESULTS AND ANALYSIS 

Zone-1 setting (Z1set) of MDR used for protection of line AB (Figure 2) is given by  

Equation 1 [17]. 

 

                                                              (1) 
 

Using Equation 1, Z1set of MDR for 200 km line is done at 160 km (80% of 200 km).  To observe 

the under reach phenomenon of the MDR, line length of TLine1 is adjusted as 150 km (Figure 2). The burden 

connected to CT secondary is increased to obtain CT saturation condition. Use of ideal CT, actual CT and RC 

in distance protection scheme is analyzed with the help of secondary current waveforms, B-H curves, Zap 

trajectories and operating time of MDR.   

 

3.1. Impact of CT Secondary Burden 

To observe the effect of unsaturated and saturated CT, the burden connected to its secondary is 

varied from 0.5 Ω to 10 Ω.  

 

3.1.1. Transient Response 

Figure 6a to 6e shows the secondary current waveforms generated by use of Ideal CT (blue), Actual 

CT (red) and RC (green). When the fault is created at maximum value of voltage (Vmax), with relay burden 

(Rb) of 0.5 Ω, it is observed that ideal CT, actual CT and RC produces symmetrical secondary current 

waveforms which are overlaying on each other (Figure 6(a)). With the same burden Rb, when the fault is 

created at zero voltage, the current waveforms found to be shifted upwards from the reference due to DC 

offset and some distortions are observed in secondary current waveforms produced by actual CT  

(Figure 6(b)). When Rb is increased to 2 Ω, 5 Ω and 10 Ω, it is observed that the actual CT secondary 

waveform obtains more and more clipped and distorted shape (Figure 6(c) – 6(e)), whereas it is found that RC 

transforms primary current faithfully on secondary side as its secondary current waveform overlaying on 

secondary current waveform produced by ideal CT. 
Comparison of the secondary current root means square (rms) values at different burdens are given 

by Table 4. It is observed that rms value of the secondary current produced by ideal CT and RC are 

approximately equal, but in case of actual CT it goes on reducing with increase in burden.  

 

 

Table 4. Secondary Currents at different CT Burdens 

Instant of Fault 

Relay Burden(Rb) 

Secondary Burden 

v = Vmax v = 0 

0.5Ω 0.5 Ω 2 Ω 5 Ω 10 Ω 

Without CT (A) 4.21 4.25 4.25 4.25 4.25 

With CT (A) 4.21 3.72 3.52 3.35 3.205 

With Rogowski Coil (A) 4.22 4.26 4.26 4.26 4.26 
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Figure 6. Secondary Current Waveforms (a) Rb = 0.5 Ω & Fault at v=Vmax, (b) Rb = 0.5 Ω & Fault at v=0, 

(c) Rb = 2 Ω & Fault at v=0, (d) Rb = 5 Ω & Fault at v=0, (e) Rb=10 Ω & Fault at v=0 

 
 

3.1.2. B-H Curves of CT  

Figure 7(a)-7(e) shows, B-H curves generated by magnetization of actual CT. CT gives linear B-H 

curve (Figure 7(a)), when the fault is created at Vmax with CT burden as 0.5Ω. With same CT burden, when 

the fault is created at v=0, CT gets saturated (Figure 7(b)).  CT goes in deep saturation when the burden is 

increased from 2 Ω to 10 Ω and it requires more magnetizing force to produce same amount of flux density 

(Figure 7(c)-7(e)).  

After CT saturation, it is observed that, increase in CT burden increases magnetizing force required 

to produce same amount of flux density (Table 5).  

 

 

Table 5. B & H parameters at last saturation point with different burdens 
Instant of Fault v =Vmax v = 0 

Rb (Relay Burden) 0.5Ω 0.5 Ω 2 Ω 5 Ω 10 Ω 

B (Wb/m
2
) 0.27 2 2 2 2 

H (AT/m) 7.75 1955 2597 3296 3840 
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Figure 7. B-H Curves at different Burden, (a) Rb = 0.5 Ω & fault at v=Vmax, (b) Rb = 0.5 Ω & fault at 

v=0, (c) Rb = 2 Ω & fault at v=0, (d) Rb =5 Ω & fault at v=0, (e) Rb = 10 Ω & fault at v=0 

 

 

3.1.3. V-I Characteristics of Rogowski Coil (Case Study) 

Rogowski coil which was installed in Gujarat state for Electric Furnace purpose is shown in  

Figure 8 [18-19]. The results of the prototype installation for induction Furnace application are given in  

Table 6. The input output characteristics of Rogowski coil is shown in Figure 8. It is observed that the 
characteristics remain linear throughout the operating range of 0 Amp to 10 kA.  

 

 
 

Figure 8. Installation of Rogowski Coil for Electric Furnance Application and its V-I Characteristics 

 

 
Table 6. Parameters observed on Input and Output side of Rogowski Coil 

Sr. No. Input Current Rogowski output voltage Output from Integrator 

1 10KA 10V 20mA 

2 7.5KA 7.5V 16mA 

3 5KA 5V 12mA 

4 2.5KA 2.5V 8mA 

5 0A 0V 4mA 
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3.1.4. Apparent Impedance 

Figure 9a to Figure 9e shows Zap trajectories with ideal CT (green), actual CT (red) and RC (blue) 

along with Mho circle, when SLG fault is created at 150 km. Before saturation of CT, it is observed that all 

the Zap trajectories are overlaying on each other (Figure 9a). Figure 9b-9e shows that the Zap trajectory (red) is 

significantly impacted by the CT saturation. To have a correct tripping of the relay, Zap trajectory must fall 

inside Zone 1. But when the CT gets saturated, Zap trajectory lies outside of its Zone 1 boundary. As the CT 

comes out from saturation state, the impedance seen by MDR matches the unsaturated plot. Therefore, MDR 

shows to have a tendency to under reach. 
Table 7 gives the values of Zap obtained with different fault instants and increased burdens. The 

clipping of secondary current due CT saturation increases the magnitude of impedance seen by Mho element. 

It is observed that with increase in burden, Zap increases. 

 

 

 
 

Figure 9. Impedance Trajectories on Mho Element with different Burdens (a) Rb = 0.5 Ω & fault at v=Vmax,  

(b) Rb = 0.5 Ω & fault at v=0, (c) Rb = 2 Ω & fault at v=0, (d) Rb =5 Ω & fault at v=0,  

(e) Rb = 10 Ω & fault at v=0 

 
 

Table 7. Zap  at different Burdens 
Fault instant v =Vmax v = 0 

Rb 0.5Ω 0.5 Ω 2 Ω 5 Ω 10 Ω 

Ideal CT 4.63∠79.21
0
 4.69∠78.16

0
 4.69∠78.16

0
 4.69∠78.16

0
 4.69∠78.16

0
 

With CT 4.64∠79.01
0
 5.06∠65.61

0
 5.14∠65.30

0
 5.24∠63.84

0
 5.32∠63.10

0
 

With RC 4.62∠79.34
0
 4.68∠78.30

0
 4.68∠78.30

0
 4.68∠78.30

0
 4.68∠78.30

0
 

 

 

3.1.5. Operating time 

The operating time of a DR is considerable to make sure of high speed tripping. Before CT 

saturation, all Mho relay elements issues their tripping signals at same instant (Figure 10a). When CT burden 

is increased from 2 Ω to10Ω, CT goes in deep saturation. This CT saturation process causes the Zap to lie 

outside of Zone1 for some time and to return back when CT comes out of saturation. It delays Mho relay 

element operation connected to actual CT and result in slower than expected tripping times (Figure 10b-10e).  
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Table 8 gives the time required for the DR to operate, when the burden is increased from 0.5 to 10Ω. 

It is observed that increase in CT burden, increases the magnitude of the Zap, causing delay in the time of 

operation. 

 

 

 
 

Figure 10. Tripping Signals with different Burdens (a) Rb = 0.5 Ω & fault at v=Vmax, (b) Rb = 0.5 Ω & fault 

at v=0, (c) Rb=2Ω & fault at v=0, (d) Rb =5 Ω & fault at v=0, (e) Rb = 10 Ω & fault at v=0 

 

 

Table 8. Tripping Times at different Burdens 
Fault Instant v =Vmax v = 0 

Relay Burden 0.5Ω 0.5 Ω 2 Ω 5 Ω 10 Ω 

Without CT Instantaneous Instantaneous Instantaneous Instantaneous Instantaneous 
With CT Instantaneous After  0.183 S After  0.186 S After  0.196 S After  0.204 S 
With RC Instantaneous Instantaneous Instantaneous Instantaneous Instantaneous 

 

 

4. CONCLUSION 

Low voltage case study and conducted simulations on 220kV AC system show use and importance 

of RC in digital DPS. Influence of secondary burden of CT was investigated and it is proved that saturated 

CT produces a highly distorted secondary current. After changing the burden from 0.5 Ω to 2.5 Ω a small 

indication of core saturation was observed for at least 6 cycles after the fault. After setting burden to 10.0 Ω, 

distortions were present during the whole simulation and they caused RMS current to be smaller than in fact 

it was. This means that for a highly reactive fault path the current measured by a CT in the first few cycles is 

significantly smaller than the actual fault current. This can cause the Distance Relay to under reach and trip 

after a longer period of time than it was originally anticipated. Rogowski coil produces exact replication of 

primary current without distorting it with any load burden and prevent under reach phenomenon. 
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