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ABSTRACT

This paper evaluates the convergence of a load flow method based on Cespedes’ for-
mulation to distribution system steady-state analysis. The method is described and the
closed-form of its convergence rate is deduced. Furthermore, convergence dependence
of loading and the consequences of choosing particular initial estimates are verified
mathematically. All mathematical results have been tested in numerical simulations,
some of them presented in the paper.
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1. INTRODUCTION
Load flow methods are fundamental tools to power distribution system analysis [1, 2]. These methods

allow computing steady-state voltages at network nodes as well as the amount of power flowing through power
system devices. Nevertheless, power system literature lacks on formal analysis and comparisons among con-
vergence properties of load flow algorithms. Consistent exceptions can be found in [3, 4, 5, 6, 7]. Particularly,
in [6] the convergence of a forward-backward sweep method is evaluated and its dependence on system loading
verified. In [7], this same method is formally assessed using fixed-point concepts and the contraction mapping
theorem.

In this context, this paper introduces the convergence analysis of a load flow method based on R.
G. Cespedes’ approach to distribution system analysis [8]. For this accomplishment, section 2 introduces the
proposed method focusing on algorithm procedures and main equations. Section 3 presents the deduction of
the convergence rate of the algorithm and a mathematical region where algorithm iterates are confined, as long
as initial estimates are chosen properly. In section 4, numerical results are shown to illustrate the validity of the
mathematical developments. At last, section 5 outlines conclusions and final remarks.

2. A LOAD METHOD INSPIRED ON CESPEDES’ FORMULATION
Consider the radial feeder schematic shown in Fig. 1. In the schematic, zi denotes a series line

impedance, Ei = ei + jfi represents complex node voltages, and SLi
denotes complex loads, all refereed to

a general node i. The index ui stands for the node upstream node i. The substation bus is named the 0 (zero)
node with complex voltage denoted by E0. Furthermore, the index i points out to both a node and its upstream
line.

The complex power flow downstream line i can be computed by summing the loads and losses down-
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Figure 1. Radial distribution network schematic (adapted from [1]).

stream the line as follows

Si = SLi
+
∑
r∈∆i

SLr
+
∑
r∈∆i

zr

∣∣∣∣S∗rE∗r
∣∣∣∣2 (1)

where ∆i represents either the set of nodes downstream node i or downstream line i, depending on the variables
involved. As consequence, Si can be expressed as function of variables associated to nodes immediately
downstream line i, as follows

Si = SLi +
∑
d∈Di

Sd +
∑
d∈Di

zd

∣∣∣∣S∗dE∗d
∣∣∣∣2 (2)

where Di denotes either the set of nodes immediately downstream node i or immediately downstream line i.
Furthermore, the difference between node voltages in adjacent nodes can be expressed as

Ei = Eui − zi
(
S∗i
E∗i

)
(3)

Separating the real and imaginary parts of (2) and the voltage magnitudes in (3), the recursive equa-
tions utilized in the load flow method proposed by R. G. Cespedes [8] can be deduced. Conversely, by applying
(2) and (3) without further deductions, a similar but also effective load flow method can be designed. Starting
from initial complex voltage estimates, the two steps below can be continually repeated until the convergence
of complex voltages is reached.

1. In a backward process, the complex power flow at each node is calculated using (2), starting at end-nodes
and stopping at the first node immediately downstream from the substation node.

2. In a forward process, complex voltage are updated, away from the substation node, using (3).

The complex voltage at the substation bus is assumed constant during the procedures. The convergence criterion
refers to the maximum absolute mismatch between subsequent complex voltage iterates.

3. CONVERGENCE ASSESSMENT
This section addresses the converge assessment of the algorithm, focusing on aspects related to the

implications of choosing an initial estimate and the deduction of the convergence rate.

3.1. Initial Estimate

The update rule of the algorithm can be written recursively for iteration k as

ψ
(k)
i = ψ(k)

ui
− zi

E
(k)∗
i

(
S∗i,c + L

(k)∗
i,ac

)
(4)

where E(k)
i denotes the complex voltage at node i and iteration k, ψ(k)

i is the complex voltage at node i and
iteration k + 1, Si,c denotes the sum of all complex loads downstream node i (including the one at node i) and
L

(k)
i,ac represents the sum of all electrical losses downstream node i and iteration k.
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Let us define ~i as the set of lines in the path between node 0 and i. By (4), we have

ψ
(k)
1 = E0 − z1

E
(k)∗
1

(
S∗1,c + L

(k)∗
1,ac

)
... = ψ

(k)
1 −

...
... =

... −
...

ψ
(k)
i = ψ

(k)
ui − zi

E
(k)∗
i

(
S∗i,c + L

(k)∗
i,ac

) (5)

By summing the equations above, a closed-form for the update rule of the algorithm can be obtained.

ψ
(k)
i = E0 −

∑
m∈~i

zm

E
(k)∗
m

(
S∗m,c + L(k)∗

m,ac

)
(6)

For instance, consider a radial network with 5 nodes and connections {0–1, 1–2, 2–3, 1–4}. For this
network, the closed-form for the update rules are the following:

ψ
(k)
1 = E0 −

z1

E
(k)∗
1

(
S∗1,c + L

(k)∗
1,ac

)
(7)

ψ
(k)
2 = E0 −

z1

E
(k)∗
1

(
S∗1,c + L

(k)∗
1,ac

)
− z2

E
(k)∗
2

(
S∗2,c + L

(k)∗
2,ac

)
(8)

ψ
(k)
3 = E0 −

z1

E
(k)∗
1

(
S∗1,c + L

(k)∗
1,ac

)
− z2

E
(k)∗
2

(
S∗2,c + L

(k)∗
2,ac

)
− z3

E
(k)∗
3

(
S∗3,c + L

(k)∗
3,ac

)
(9)

ψ
(k)
4 = E0 −

z1

E
(k)∗
1

(
S∗1,c + L

(k)∗
1,ac

)
− z4

E
(k)∗
4

(
S∗4,c + L

(k)∗
4,ac

)
(10)

and, in a compact matrix notation:


ψ

(k)
1

ψ
(k)
2

ψ
(k)
3

ψ
(k)
4

 =


E0

E0

E0

E0

−


z1
E

(k)∗
1

0 0 0
z1

E
(k)∗
1

z2
E

(k)∗
2

0 0
z1

E
(k)∗
1

z2
E

(k)∗
2

z3
E

(k)∗
3

0
z1

E
(k)∗
1

0 0 z4
E

(k)∗
4



S∗1,c + L

(k)∗
1,ac

S∗2,c + L
(k)∗
2,ac

S∗3,c + L
(k)∗
3,ac

S∗4,c + L
(k)∗
4,ac

 (11)

This example suggests the update rule can be written in a general compact matrix notation. For this
accomplishment, assuming an indexing where ui < i, let us define the lower triangular path matrix T with size
n× n and entries

tim =

{
1, if m ∈ ~i
0, otherwise (12)

Then, the update rule of the algorithm can written in the compact form

Ψ(k) = E0 −TZpS∗cK
(k)∗ −TZpL(k)∗

ac K(k)∗ (13)

where Ψ(k) is a n × 1 vector with entries given by ψ(k)
i , E0 is a n × 1 vector with entries equal to E0, Zp is

the n × n primitive impedance matrix, Sc denotes a n × n diagonal matrix with elements equal to Si,c, L
(k)
ac

represents a n× n diagonal matrix with elements given by L(k)
i,ac and K(k) is a n× 1 vector with reciprocals of

E
(k)
i .

Let nowR be a closed region in the complex space Cn defined byR = {E ∈ Cn, ||Ei|| ≥ (E0 − α),
∀i = 1, . . . , n}, for some α ∈ R such that

E0

2
≤ α < E0 −

√
ρα (14)

where
ρα = ||TZpS∗c||+ ||TZp||

∣∣∣∣L∗ac,α∣∣∣∣ (15)

IJECE Vol. 6, No. 6, December 2016: 3276 – 3282



IJECE ISSN: 2088-8708 3279

and Lac,α is a n× n diagonal with entries given by the maximum accumulated losses downstream each node,
computed using a backward process with voltage magnitudes equal to (E0 − α).

Given an iterate E(k) ∈ R, by (13) we have∣∣∣∣∣∣Ψ(k) −E0

∣∣∣∣∣∣ =
∣∣∣∣∣∣TZpS∗cK

(k)∗ + TZpL(k)∗
ac K(k)∗

∣∣∣∣∣∣
≤ ||TZpS∗c||

∣∣∣∣∣∣K(k)∗
∣∣∣∣∣∣+ ||TZp||

∣∣∣∣∣∣L(k)∗
ac

∣∣∣∣∣∣ ∣∣∣∣∣∣K(k)∗
∣∣∣∣∣∣

≤ ||TZpS∗c||
(E0 − α)

+
||TZp||

∣∣∣∣L∗ac,α∣∣∣∣
(E0 − α)

(16)

and, by using (14) we have ∣∣∣∣∣∣Ψ(k) −E0

∣∣∣∣∣∣ ≤ ρα
(E0 − α)

< (E0 − α) ≤ α (17)

Therefore, assuming the existence ofR, for a given α if E(k) ∈ R, then Ψ(k) belongs to an open ball
(in Cn) centered in E0 and radius equal to α. Particularly, Ψ(k) ∈ R for all E(0) ∈ R, ∀k, then if the initial
estimate belongsR, all other iterates also belong toR.

3.2. Convergence Rate

Once a region where iterates are confided through the iterative process have been deduced, let us
examine the convergence rate of the algorithm. Notice that two subsequent iterates of the algorithm can be
written as

ψ
(k+1)
i = E0 −

∑
m∈~i

zm

E
(k+1)∗
m

(
S∗m,c + L(k+1)∗

m,ac

)
(18)

ψ
(k)
i = E0 −

∑
m∈~i

zm

E
(k)∗
m

(
S∗m,c + L(k)∗

m,ac

)
(19)

and, subtracting (19) from (18) we have

∆ψ
(k+1)
i =

∑
m∈~i

[
zm

E
(k)∗
m

(
S∗m,c + L(k)∗

m,ac

)
− zm

E
(k+1)∗
m

(
S∗m,c + L(k+1)∗

m,ac

)]
(20)

Hence, by manipulating the terms of the equation above, we have

∆ψ
(k+1)
i =

∑
m∈~i

zm

[
S∗m,c + L

(k+1)∗
m,ac

E
(k+1)∗
m E

(k)∗
m

− ∆L
(k+1)∗
m,ac

E
(k+1)∗
m ∆E

(k+1)∗
m

]
∆E(k+1)∗

m (21)

where ∆E
(k+1)
m = E

(k+1)
m − E(k)

m and ∆L
(k+1)
m,ac = L

(k+1)
m,ac − L(k)

m,ac.
In a compact form, this expression can be rewritten as

∆ψ
(k+1)
i =

∑
m∈~i

D
(k+1)
im ∆E(k+1)∗

m (22)

in which

D
(k+1)
im =

∑
m∈~i

zm

[
S∗m,c + L

(k+1)∗
m,ac

E
(k+1)∗
m E

(k)∗
m

− ∆L
(k+1)∗
m,ac

E
(k+1)∗
m ∆E

(k+1)∗
m

]
(23)

Equation (22) can also be written in matrix notation as

∆Ψ(k+1) = D(k+1)∆E(k+1)∗ (24)

where ∆Ψ(k+1) = Ψ(k+1) −Ψ(k), D(k+1) is a n × n matrix with entries given by D(k+1)
im and ∆E(k+1) =

E(k+1) −E(k). Matrix D(k+1) indicates the convergence rate of the algorithm in each iteration. It also proves
convergence direct dependence on network loading, losses iterates and convergence of losses.
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Figure 2. Schematic of the actual distribution network utilized in the evaluations.

4. NUMERICAL RESULTS
Numerical load flow analysis are presented in this section to verify the provided mathematical results.

Fig. 2 shows an actual 13.80 kV distribution network with 490 nodes utilized to this purpose. Without loss
of generality, the value of 8.28 kV (0.6000 pu) has been chosen as α. This implies in a feasible region R ,{
E ∈ C489, ||Ei|| ≥ E0 − α, ∀i = 1, . . . , 489}, which meets the interval

0.5000 pu =
E0

2
≤ α < E0 −

√
ρα = 0.8160 pu (25)

where ρα equals 0.0339 pu.
Complex voltages have been obtained using the load flow method. Results have been validated using

the approach proposed in [1]. Table 1(a) shows the real and imaginary parts of voltage iterates as well as error
values for node 300, assuming the uncommon initial estimate of 2.00∠63.03o pu, ∀i. On the other hand, Table
1(b) shows the same variables, but for a case considering a loading increased by sevenfold. The maximum
absolute mismatch between voltage iterates has been chosen as convergence criterion. The last iterate has been
set as solution for the sake of error computation. Tolerance has been specified to 10−6.

Table 1. Numerical results for bus 300 assuming the initial estimate E(0)
i = 2.00∠63.03o pu, ∀i

(a) Normal loading

k e300 (pu) f300 (pu)
∣∣∣∣∣∣D(k)

∣∣∣∣∣∣ Error

0 0.90719 -1.78241 - -
1 0.99995 -0.01043 0.00013 1.79E−00
2 0.98115 -0.00927 0.00073 2.28E−02
3 0.98096 -0.00936 0.00069 3.16E−04
4 0.98096 -0.00936 0.00079 2.91E−06
5 0.98096 -0.00936 0.00074 2.18E−08
6 0.98096 -0.00936 0 0

(b) Increased loading

k e300 (pu) f300 (pu)
∣∣∣∣∣∣D(k)

∣∣∣∣∣∣ Error

0 0.90719 -1.78241 - -
1 0.99915 -0.07408 0.00677 1.86E−00
2 0.85611 -0.06065 0.05374 1.94E−01
3 0.84061 -0.06560 0.07107 2.48E−02
4 0.83888 -0.06560 0.07926 2.89E−03
5 0.83870 -0.06563 0.07756 3.13E−04
6 0.83868 -0.06563 0.07852 3.20E−05
7 0.83868 -0.06563 0.07816 3.23E−06
8 0.83868 -0.06563 0.07826 2.96E−07
9 0.83868 -0.06563 0 0

Fig. 3 shows the first two voltage iterates for the first case in a level curve of the convergence region.
As expected, one can notice that even by choosing a nonrealistic solution as initial estimate, the first

iterate belongs to an open ball centered in E0 and limited by radius α, followed that the convergence of the
algorithm is reached. Convergence rate is shown to be, in these cases, lower to the unit. Furthermore, as
deduced, the increase of loading caused an increase of convergence rate, impacting on the algorithm efficiency.
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Figure 3. Iterates in a level curve of the regionR, for the bus 300. Initial estimate: E(0)
i = 2.00∠63.03o pu.

5. CONCLUSIONS
This paper evaluates the convergence of a load flow method inspired on R. G. Cespedes’ recursive

equations. Numerical results and formal deduction of convergence rate show that the efficiency of the method
depends on the network loading, losses and convergence of losses. Also, a region where algorithm iterates are
confined is deduced as long as initial estimates are chosen properly. Future works will extend these develop-
ments to three-phase load flow approaches.
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