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 Nowadays we all are surrounded by Big data. The term „Big Data‟ itself 

indicates huge volume, high velocity, variety and veracity i.e. uncertainty of 

data which gave rise to new difficulties and challenges. Big data generated 

may be structured data, Semi Structured data or unstructured data. For 

existing database and systems lot of difficulties are there to process, 

analyze, store and manage such a Big Data. The Big Data challenges are 

Protection, Curation, Capture, Analysis, Searching, Visualization, Storage, 

Transfer and sharing. Map Reduce is a framework using which we can write 

applications to process huge amount of data, in parallel, on large clusters of 

commodity hardware in a reliable manner. Lot of efforts have been put by 

different researchers to make it simple, easy, effective and efficient. In our 

survey paper we emphasized on the working of Map Reduce, challenges, 

opportunities and recent trends so that researchers can think on further 

improvement. 
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1. INTRODUCTION 

Nowadays we all are surrounded by huge data. People upload/download videos, audios, images 

from variety of devices. Sending text messages, multimedia messages, updating their Facebook, WhatsApp, 

Twitter status, comments, online shopping, online advertising etc. generates huge data. As a result, machines 

have to generate and keep huge data too. Due to this exponential growth of data the analysis of that data 

become challenging and difficult.  

 

 

 
 

Figure 1. Four Vs of Big Data 
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As shown in Figure 1 the term „Big Data‟ means huge volume, high velocity, variety and veracity 

i.e. uncertainty of data. This big data is increasing tremendously day by day. The Big data generated may be 

structured data, Semi Structured data or unstructured data. Existing databases and tools are not good enough 

to process, analyze, store and manage such a Big Data effectively and efficiently [1-3].  

 

 

2. HADOOP 

Hadoop is an open-source, big data storage and high speed data processing software framework. As 

shown in Figure 2 it uses clusters of commodity hardware to store and process big data in a distributed 

fashion. Tremendous data storage, processing that data with high speed are making Hadoop more suitable 

for big data processing [4].  
Hadoop cluster is a set of commodity machines involving huge storage capabilities, networked 

together in one location i.e. cloud. These cloud machines are then used for Data storage and processing. 

From individual client‟s user can submit their jobs to cluster. These clients may be present at some remote 

locations from the Hadoop cluster. Distributed file system, faster processing, faster data transfer, good fault 

tolerance made Hadoop very efficient and reliable. Hadoop transfers code to data which is tiny and 

consumes less memory. Along with data required this tiny code get executed there itself. As data is locally 

available on that machine lot of time, computing resources are saved.  
 

 

 
 

 Figure 2. Hadoop Cluster  

 

 

In order to provide better data availability and fault tolerance replication of data is done. User need 

not to worry about partitioning the data, data and task assignment to nodes, communication between nodes. 

As Hadoop handles it all, user can concentrate on data and operations on that data.  

 

2.1. Important Features of Hadoop 

2.1.1. Low Cost  

As Hadoop is an open-source framework, it is free. It uses commodity hardware to store and 

process huge data. Hence not much costly. 

 

2.1.2. High Computing Power   

Hadoop uses distributed computing model. Due to this task can be distributed amongst different 

nodes and can be processed quickly. Cluster have thousands of nodes which gives high computing capability 

to Hadoop. 

 

2.1.3. Scalability   

Nodes can be easily added and removed. Even failed nodes can be easily identified. For all these 

activities very little administration is required. 

 

2.1.4. Huge and Flexible Storage   

Massive data storage is available due to thousands of nodes in the cluster. It supports both 

structured and unstructured data. No preprocessing is required on data before storing it.  
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2.1.5. Fault Tolerance and Data Protection   

If any node fails the tasks in hand are automatically redirected to other nodes. Multiple copies of all 

data are automatically stored. Due to this even if any node fails that data is available on some other nodes 

also. 

 

2.2. Comparison of Hadoop with Traditional RDBMS 

Table 1 is showing the difference between traditional RDBMS and Hadoop which indicates that 

traditional databases are not that much supportive for big data. 

 

 

Table 1. Hadoop-RDBMS Comparision 
Sr.No. Hadoop RDBMS 

01 Hadoop stores both structured and unstructured data. RDBMS stores data in a structural way.  

02 SQL can be implemented on top of Hadoop as the execution engine SQL (structured query language) is used. 

03 Scaling out is not that much expensive as machines can be added or 

removed with ease and little administration. 

Scaling up (upgradation) is very 

expensive. 
04 Basic data unit is key/value pairs. Basic data unit is relational tables. 

05 With MapReduce we can use scripts and codes to tell actual steps in 

processing the data. 

With SQL we can state expected result 

and database engine derives it. 
06 Hadoop is designed for offline processing  and analysis of large-

scale data. 

RDBMS is designed for online 

transactions.  

 

 

2.3. Hadoop System Principles 

2.3.1. Scaling Out  

 In Traditional RDBMS it is quite difficult to add more hardware, software resources i.e. scale up. In 

Hadoop this can be easily done i.e. scale down.  

 

2.3.2. Transfer code to data 

In RDBMS generally data is moved to code and results are stored back. As data  is moving there is 

always a security threat. In Hadoop small code is moved to data and it is executed there itself. Thus data is 

local. Thus Hadoop correlates preprocessors and storage. 

 

2.3.3. Fault Tolerance 

Hadoop is designed to cope up with node failures. As large number of machines  are there, a node 

failure is very common problem. 

 

2.3.4. Abstraction of Complexities 

Hadoop provides proper interfaces between components for proper working. 

 

2.3.5. Data protection and Consistency 

Hadoop handles system level challenges as it supports data consistency. 

 

2.4. Building Blocks of Hadoop  

As shown in Figure 3 a set of resident programs i.e. daemons are running in Hadoop. These 

daemons may be running on the same server or on the different servers in the network. All these daemons 

have some specific functionality assigned to them. Let us see these daemons,  

 

 

 
 

Figure 3. Hadoop Cluster Topology 

 

 

2.4.1. Secondary NameNode 

The Secondary NameNode (SNN) monitors the state of the cluster HDFS. Each cluster has one 

SNN which resides on its own machine also. On the same server any other DataNode or TaskTracker 
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daemons cannot be run. NameNode also provides snapshots of the HDFS metadata at regular intervals to 

SNN.  

 

2.4.2. NameNode 

It is the Master node in HDFS. It provides instructions to slave (DataNode) for input output tasks of 

low level. The NameNode keeps track of files broken down into file blocks, nodes storing these blocks and 

the overall functionality of the distributed file system. NameNode is the only single point of failure 

component in HDFS. 

 

2.4.3. DataNode 

NameNode tells client the block addresses in DataNodes. Thus client can directly communicate to 

DataNodeto process the local files inside those blocks. For replication of data one DataNode may 

communicate with other DataNode directly. DataNodes continually provides information to NameNode 

regarding local changes. DataNode also receives instructions for creation or movement or deletion of blocks 

from the local disk. 

 

2.4.4. JobTracker 

The JobTracker determines the execution plan. It determines files to process, node assignments for 

different tasks, tasks monitoring etc. There is only one JobTracker daemon per Hadoop cluster. It runs on a 

server as a master node of the cluster. 

 

2.4.5. TaskTracker 

Individual tasks assigned by JobTracker are executed by TaskTracker. There is a single 

TaskTracker per slave node. TaskTracker may handle multiple tasks parallelly by using multiple JVMs. 

TaskTracker constantly communicates with the JobTracker. Within a specified amount of time if the 

TaskTracker fails to respond to JobTracker then it is assumed that the TaskTracker has crashed. 

Corresponding tasks are resubmitted to other nodes in the cluster. 

The interaction between JobTracker and TaskTracker is shown by Figure 4. 

 

 

 
 

Figure 4. JobTracker and TaskTracker Interaction 

 

 

2.5. Hadoop Limitation  

Hadoop can perform only batch processing and sequential access. Sequential access is time 

consuming. So a new technique is needed to get rid of this problem.  

 

2.6. Hadoop Distributed File System (HDFS) 

HDFS can store very large files. It supports streaming data access patterns. HDFS runs on clusters 

on commodity hardware. HDFS has following important characteristics,  

a. Highly fault-tolerant 

b. High throughput 

c. Supports application with massive data sets 

d. Streaming data access 

e. Easily built on commodity hardware.   

In HDFS a file is chopped into 64MB/128MB chunks and then stored known as blocks. As shown 

in Figure 5 HDFS cluster has two types of node – Master (NameNode) and Slave (DataNode). NameNode 

manages the namespace of the filesystem. It maintains the file system tree. The metadata contains the 

information about all the directories and files in the tree is also stored. This information is stored constantly 

on the local disk in the form of two files: the namespace image and the edit log.  

 Through the communicationwith the Namenode and Datanodes a client can get the access of the 

filesystem. The user code is unaware about which Namenode and Datanode are function. Only after 
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instructions from NameNode, Datanodes store and retrieve blocks. At the same time, they are providing 

storage updates toNameNode. 

 

 

 
 

Figure 5. HDFS Architecture 

 

 

3. MAPREDUCE 

Huge amount of data can be easily, efficiently processed by Map Reduce with great parallelism. 

Moreover, these applications can run on clusters of commodity hardware which makes it suitable for scaling. 

Map Reduce is based on java. The Map Reduce algorithm contains Map task and Reduce task. The general 

MapReduce dataflow is as shown in Figure 6. In Map task individual elements are broken down into tuples 

also known as key/value pairs. Reduce task further takes these intermediate tuples as an input. Then Reduce 

task combines it into a smaller set of tuples. Reduce task can be started only after the completion of Map 

task [5-8].   

 

 

 
 

Figure 6. The General Mapreduce Dataflow 

 

 

3.1. Map Reduce core functions 

a. Input reader  

Divides input into small parts / blocks. These blocks then get assigned to a Map function.  

b. Map function  

Individual elements are broken down into tuples also known as key/value pairs.  

c. Shuffle and Sort 

Partition function  

With the given key and number of reducers it finds the correct reducer.  

Compare function  

Map intermediate outputs are sorted according to this compare function.  

d. Reduce function 

Combines intermediate tuples into a smaller set of tuples and gives it to ouput. 

e. Output writer  

Gives file output. 

Let us understand MapReduce working with an example, 

 File1: "Hi Srushti Hi Shruti"   File2: "Bye Srushti Bye Shruti" 
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Number of occurrences of each word across different files are to be counted.  

Three operations will be there as follows, 

 

Map 

Map1      Map2 

< Hi, 1 >     <Bye, 1 > 

<Srushti, 1 >     <Srushti, 1 > 

< Hi, 1 >     <Bye, 1 > 

<Shruti, 1 >     <Shruti, 1 > 

 

Combine 

Combine Map1     Combine Map2 

<Srushti, 1 >     <Srushti, 1 > 

<Shruti, 1 >     <Shruti, 1 > 

< Hi, 2 >     <Bye, 2 > 

     

Reduce 

<Srushti, 2 >         

<Shruti, 2 > 

<Bye, 2 > 

< Hi, 2 > 

 

3.2. Number of Mappers and Reducers 

Amount of data and the block size decides the number of Maps. Hadoop API with the 

setNumMapTasks(int) method provides the current number of mappers in the system. A numbers of 

Reducers are directly related to the Mapper's input. As per specification it will be executed. Map Reduce 

command „-D mapred. reduce‟ can set the number of Reducers at runtime as well. „conf. 

setNumReduceTasks(int)‟ is the method through which programmers can set it with coding. 

 

3.3. Failure Handling in Map Reduce 

Machine failure handling is very important aspect of Map Reduce as it uses hundreds or thousands 

of commodity machines. There are two types of basic failures as Master node failure or Worker node failure. 

If Master node fails, then all Map Reduce task is aborted. The whole task is to be assigned to a new Master 

node and again it has to be redone.  

Master constantly checks the worker status in order to check failure. If worker does not respond to 

master in time, then it is marked as a failed. If map task worker fails, then with no consideration of any map 

tasks state i.e. whether it is in progress/completed etc. workers are reset to their initial idle state. The task 

then will be assigned to other idle worker. If reduce task fails an idle worker is chosen for reassignment of 

the task irrespective of any task state.  

 

3.4. Data Storage and Replication in Map Reduce  

In Map Reduce completed reduce tasks output is stored in global file system. Thus re-execution of 

completed reduce tasks is not required. Local disks are used to store the results of map tasks. In case of 

failure it can be re-executed from local disks.  

 

3.5. MapReduce Challenges 

Following are the limitations of MapReduce identified [9-13], 

1) No reduce can begin until all maps are complete 

2) Map reduce reduce task starts only after finishing of the all map tasks.  

3) Master must communicate locations of intermediate files. 

4) After every map task lot of intermediate data is generated and it is to be stored and also to be informed 

to others. 

5) Tasks scheduled based on location of data. 

6) Lot of computation is required to provide data location and then to allocate resources on that location.  

7) Before reduce finishes if map worker fails, task must be completely rerun 

8) If master fails then the whole Map Reduce task get aborted, and it has to be redone after assigning new 

master node. 

9) Intermediate data 

10) Lots of intermediate data is generated. After use it is destroyed. 
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11) Heterogeneous data 

Data is coming from different sources and different formats. 

 

 

4. RESULTS AND ANALYSIS 

In this section we will discuss the work done by different researchers on different challenges,  

 

4.1. Challenge I: No Reduce can Begin Until all Maps are Complete 

In Map Reduce, a reducer cannot start its processing till the completion of all the mapping tasks. 

The major drawback of this technique is that reducers have to wait unnecessarily. In other sense it is not an 

effective and efficient use of resources.  

Abdel Rahman Elsayed et al., [11] done investigation on MapReduce research trends, and current 

research efforts. They suggested that new algorithms can be developed or framework can be modified in 

order to improve the performance of MapReduce.  

Dhole Poonam et al., [14] proposed a solution for this problem. In their work pipelined map reduce 

mapper can send its output directly to reducer as an input. Thus completion time, system utilization for batch 

jobs are improved. 

 

4.2. Challenge II: Master must Communicate Locations of Intermediate Files 

Diana Moise et al., [5] proposed the use of BlobSeer data management service for storing 

intermediate results. It is a fault-tolerant, concurrency optimized data storage layer. Thus it is an alternative 

for local storage of the mappers. Thus the intermediate data can be maintained separately and later on it can 

be used again.  

 

4.3. Challenge III: Tasks Scheduled Based on Location of Data 

Nilam Kadale et al., [15] stated that in Mapreduce framework different task scheduling methods are 

used to schedule the task. Survey of various task scheduling methods of Mapreduce framework is done.  

Jun Liu et al., [16] introduced dynamic priority scheduling and real-time prediction model. They 

introduced the data locality algorithm which has minimum cost and also considers a weight. Real-time 

prediction model is used to better serve different size jobs. They also stated that resource utilization of 

unexecuted tasks can be predicted by calculating the running tasks.  

Bo Zhang et al., [17] proposed a feedback control loop based approach. Based on the current state 

of the cluster they dynamically adjusted the Hadoop resource manager configuration. They improved the 

performance of the system by 30% as compared to default Hadoop setup. 

Muhammad Idris et al., [18] provided good survey on Hadoop MapReduce scheduling and 

enhancements done so far. They also discussed open issues, challenges related to the scheduling done in 

MapReduce.  

 

4.4. Challenge IV: Before Reduce Finishes if Map Worker Fails, Task Must be Completely Rerun 

In order to solve this problem, the same task can be executed on different nodes. The node which 

finishes execution first gives output. Then simply we can abort all other executions [12].  

 

4.5. Challenge V: Intermediate Data 

Yaxiong Zhao et al., [19] proposed a novel Dache (Data Aware Cache) technique. Cache manager 

gets intermediate results from different tasks. Before executing any task, a task queries the cache manager. If 

it is available in cache then same is used, if not then only new computing is done. They designed a new 

cache request and reply protocol, cache description scheme. Through their results they have shown the 

significant improvement in the completion time of MapReduce jobs. 

R. Udendran et al., [20] done review on the data-aware cache (Dache) for big data applications. 

They also stated that better life-time management of cache is required if it requires huge amount of cache. 

Diana Moise et al., [5]
 
in their paper focused on intermediate data generated in map reduce process. They 

proposed a new storage mechanism for intermediate data on the BlobSeer data management service. Failure 

handling, minimum execution time, concurrency control etc. are managed properly. Thus reduced the local 

storage dependency. Thus reuse of intermediate data is possible. 

Mrudula Varade et al., [21] given a good comparative study of a metadata management schemes. 

To maintain reliability, metadata is replicated in different NameNodes. Log replication technology is used 

for replication. To maintain replication consistency Paxos algorithm is used. 
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4.6. Challenge VI: Heterogeneous Data 

Jun Qu et al., [22] proposed a new framework called as Map-Reduce-Merge. Web heterogeneous 

data processing is efficiently done. They done their experiments on features of web data.  

Nenavath Srinivas Naik et al., [23]
 
proposed Map Reduce Reinforcement Learning scheduler. This 

scheduler suggests the re-execution of slower tasks to other available nodes by observing the system state and 

task execution. Thus faster execution of the task can be done. No prior knowledge of the system is required. 

Thus overall job completion time is significantly minimized. 

 

 

5. CONCLUSION  

Big data is increasing tremendously day by day which gave rise to new difficulties and challenges as 

we have to store, process, analyze, modify such a huge amount of data. Existing databases, tools are not good 

enough to handle this issue. In our paper we have provided overview of the big data, its challenges with 

respect to Map reduce. Many efforts taken to reduce those challenges are also discussed. Thus better planning 

of Big Data projects can be done. For researchers‟ opportunities for future research can be identified. 
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