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 Various face recognition methods are derived using local features among 

them the Local Binary Pattern (LBP) approach is very famous. The 

histogram techniques based on LBP is a complex task. Later Uniform Local 

Binary Pattern (ULBP) is derived on LBP, based on the bitwise transitions 

and ULBP‟s are treated as the fundamental property of texture. The ULBP 

approach treated all Non-Uniform Local Binary Patterns‟ (NULBP) into one 

miscellaneous label. Recently we have derived Prominent LBP (PLBP), 

Maximum PLBP (MPLBP) and Smallest PLBP (SPLBP). The PLBP consists 

of the majority of the ULBP‟s and some of the NULBP‟s. The basic 

disadvantage of these various variants of LBP‟s  is they are basically local 

approaches and completely failed in representing features derived from large 

regions or macrostructures, which are very much essential for faces. This 

paper derives PLBP‟s on the large region. The rectangular region of this 

paper is assumed with a size of multiples of three and PLBPs are evaluated 

on dividing each region into multiple regions. The proposed Multi Region-

PLBP (MR-PLBP) approach is tested on three facial databases namely Yale, 

Indian and AT&T ORL. The experimental results show the proposed 

approach significantly outperforms the other LBP based face recognition 

methods. 
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1. INTRODUCTION 

Face recognition is one of the significant and prominent research topics for the last two decades, due 

to its potential applications and challenges. Face recognition deals with recognition of a test facial image 

from a feature library or data set of facial images. The researchers in image processing and facial image 

analytics of big data are showing tremendous interest because of its wide range of applications like human 

face interaction, surveillance in public and private military and other areas in various legal and property  

issues to identify the proper person. The face identification accuracy significantly decreases when obtained 

images do not have adequate quality either due to a variety of facial expressions, subject‟s alignment problem 

to the camera, gaze deviations or facial hair [1-5].  

The human face can be identified based on the local and regional attributes. Today, the challenge in 

face recognition is, how to identify and capture this information. The Local Binary Pattern (LBP) is a 

powerful local descriptor for texture analysis and also extensively used in various applications [6]. The local 

information derived from LBP is used widely in facial analysis especially for the purpose of face  

recognition [7-13] age classification [14], [15-17] and facial expression recognition [18]. Few researchers 
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used pre-processing methods to improve classification performance [12], [19] on LBP because it is more 

prone to noise. 

The fundamental LBP operator has small spatial support area and they completely fail in capturing 

large scale structure (macrostructure) that may be the dominant feature of faces. In the literature, the Uniform 

Local Binary Pattern (ULBP) are used for classification and recognition purpose because they contain 

fundamental properties of the texture and ignored the majority of Non Uniform Local Binary Pattern 

(NULBP) as miscellaneous. The ULBPs alone may not describe stochastic attributes and characteristics of 

texture efficiently. Recently we have proposed a new variant of LBP called Prominent LBP (PLBP) that 

captures a set of ULBPs and a set of NULBPs. To capture local and regional information of faces with a 

uniformity of region and sub-region size the present paper proposes MR-PLBP. In the proposed method, the 

average value of each sub-region is converted into the grey level value of neighboring pixels. That‟s why the 

proposed method is more robust. The proposed MR-PLBP with various variants of PLBP is different from 

the other multi-block approaches because they have used uniform and other variants of LBP features [20]. 

The present paper is organized as follows. Section 2 describes the related work. The section 3 and 4 

presents the methodology and results and discussion. Section 5 presents the conclusions. 

 

 

2. RELATED WORK 

2.1. Local Binary Pattern (LBP) 

In the original LBP, introduced by the Ojala [6] a thresholding process between the grey level 

values of the central pixel and each of the neighborhood pixels on a 3*3 window converts the neighboring 

pixel values into a binary value. The binary weights are multiplied with the binary value and sum of these 

values results as LBP code or weight as shown in Figure 1. 
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Figure 1. Representation of Basic LBP code (a) 3*3 Neighborhood, (b) LBP Values after Thresholding,             

(c) Representation of LBP Weights, (d) LBP Code 

 

 

The LBP Code can also be derived from the equation 1 [21] 
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where gi and gc represent the grey level values of the neighboring and central pixel on a 3*3 neighborhood, S 

represents the sign function, where  
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The Uniform Local Binary Pattern (ULBP) is derived on the LBP to improve the performance and 

to reduce overall features. The ULBP provides a majority of patterns: 90% for (8,2) type LBP; 70% for 

(16,2) type LBP [21], that‟s why they are treated as fundamental local texture properties of the image and 

researchers considered the NULBPs as miscellaneous. There will be 58 ULBPs and 198 NULBPs on a basic 

LBP i.e. (8, 1). This number of NULBPs increases drastically as we increase the size of the neighborhood or 

the number neighboring pixels.  

 

2.2. Prominent Local Binary Patten (PLBP) 

Many researchers expressed their views on the capability of ULBP and NULBP in terms of texture 

image analysis, recognition etc., some researchers [21-25] explored extensively NULBP‟s and derived a few 

NULBP and ULBP in a feature vector and conducted experiments. H. Zhou et al. [23] suggested that ULBP 

alone do not describe the stochastic attributes of texture efficiently. As a result, texture primitive information 
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represented by these patterns is lost, especially when large neighborhoods are considered. This single pattern 

makes the uniform patterns sensitive to noise. An extended version of LBP operator (LBP extend) is also 

proposed in the literature [23], which tried to use more than one bin for describing non-uniform patterns and 

to reduce the effect of noise. Several other attempts were also made in the literature to use non-uniform 

patterns to overcome the limitation of the standard LBP [26-27], [9], [22], [13]. Some of the methods 

extracted rotation invariant non-uniform patterns [27], [9], [22]. 

The present research argues that some useful information can be obtained by using NULBPs. The 

major problem is what kind or type of NULBPs to be selected from the large set of NULBPs. So far there is 

no mechanism that derives the majority of the ULBPs and a few of NULBPs as one set. All the above 

researchers considered some NULBP in their own way. This has lead lot ambiguity. To overcome this 

ambiguity and to give a systematic way of selecting NULBPs the present paper utilized our previous 

derivation called Prominent Local Binary Pattern (PLBP) [8]. The interesting feature of PLBP is that it 

contains a set of ULBPs and NULBPs. The Prominent Local Binary Pattern (PLBP) considers the transition 

that occurs after two or more consecutive zeros immediately followed by two or more consecutive ones and 

vice versa, in a circular manner. For example, the LBP code 35 constitutes the PLBP and the LBP code 96 

forms a Non Prominent Local Binary Pattern (NPLBP).  

The PLBP contains a total of 92 patterns out of 256 of LBP on a (P,R)=(8,1). The PLBP contains 40 

ULBPs out of 58 and 52 NULBPs out of 198. This means the PLBP discards 18 ULBPs and 146 NULBPs 

into one label called “miscellaneous”. For the efficient face recognition system, the present paper derived two 

variants of PLBP, namely Maximum Prominent Local Binary Pattern (MPLBP) formed from PLBP U ULBP 

and Small Prominent Local Binary Pattern (SPLBP) formed from PLBP∩ULBP on facial images. The 

SPLBP and MPLBP contain a total of 40 and 110 patterns respectively on a 3x3 neighborhood. The 

following Table 1 shows the relationship between various variants of LBP i.e. ULBP, NULBP, PLBP, 

NPLBP, MPLBP and SPLBP. 

 

 

Table 1. Relationship between Various Variants of LBP 
S. No. BINARY 

PATTERN 

DECIMAL 

VALUE 

ULBP NULBP PLBP NPLBP MPLBP SPLBP 

1 00000000 0  X X   X 

2 00000110 6  X  X   
3 00100011 35 X   X  X 

4 00111110 60  X  X   
5 01101111 111 X  X  X X 

6 10110001 177 X   X  X 

7 11111011 251  X X   X 

8 11111111 255  X X   X 

 

 

The union of PLBP and ULBP (PLBP U ULBP) contains a total of 110 patterns out of which 58 are 

ULBPs and 52 are NULBPs. This set is named as Maximum Prominent Local Binary Pattern (MPLBP) [8]. 

The MPLBP treats the remaining 146 NULBPs as a miscellaneous set. The intersection of PLBP and ULBP 

(PLBP∩ULBP) is named as the Smallest Prominent Local Binary Pattern (SPLBP) [8]. The SPLBP contains 

a total of 40 patterns out of which all 40 are ULBPs and it contains zero NULBPs. The SPLBP treats the 

remaining 216 LBPs (which contain 18 ULBPs and 198 NULBPs) as a miscellaneous set. 

 

 

3. MULTI REGION PROMINENT LOCAL BINARY PATTERN (MR-PLBP) 

The basic LBP operators with any (P, R) (where P corresponds to the number of neighboring pixels 

on a circle of radius of R) only capable of extracting features on small spatial neighborhood i.e. micro level 

features and thus they fail in capturing larger scale structures or macrostructures which are also dominant on 

faces. Further, the grey level comparison may prone to noise when differences of grey values of pixels are 

very small or equal [28-29]. To overcome this present paper proposes Multi Region- Prominent Local Binary 

Pattern (MR-PLBP). The main advantage of the MR-PLBP is the size of the block and sub-blocks are fixed 

(multiples of 3). The previous researchers derived only LBP or ULBP features are derived from multi blocks 

by treating all NULBPS of the region as miscellaneous. In the proposed MR-PLBP the size of the region is 

fixed as R*S where R and S should be multiples of three. The region of size R*S is subdivided into nine sub-

regions of size N*M where N=R/3 and M=S/3. This gives the uniformity in the formation of MR-PLBP. The 

other advantage of the present method is it estimates the various variants of PLBP on multi regions.  

The each multi region is represented by a single value and the value of each multi region is the 

average grey level value of the pixels of that sub-region. A binary code is derived from each sub-region by 
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comparing its value with the value of the middle sub- region. The circular bitwise transition of this  

sub- region neighborhood derives PLBPs on the multi region. The scalar values i.e. average pixel grey level 

values of each sub-region of size N*M can be computed very efficiently from the integral image [30]. 

Therefore MR-PLBP features extraction process is very fast. However, it only incurs a little more cost when 

compared to basic LBP operator (8,1). Even as „P‟ increases the basic LBP feature extraction becomes 

costlier. The basic parameters R and S of MR-PLBP influence the overall structure of the features. If R and S 

are small then MR-PLBP captures only the local features and when R and S are large (especially R and 

S>=9) the MR-PLBP captures both micro and macro structure features and especially the average grey level 

values of sub-regions N*M overcomes the noise effect, makes MR-PLBP as robust, and provides large scale 

information in addition to micro level information. The MR-PLBP mechanism on a region size „S‟ of 9*9 is 

shown in Figure 2, the block sizes are 3*3. 
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Figure 2. Multi Region Prominent Local Binary Pattern (MR-PLBP) Code Generation, (a) Division of 

Region of Size 9*9 into „9‟ Sub Regions of 3*3 (b) Representation of Average Values of „9‟ Sub-Region of 

3*3 (c) Representation r-Sub-Regions with Binary Values (d) MR-PLBP Code 

 

 

The MR-PLBP code is evaluated in the same way as represented in Equation 1. The Figure 2 clearly 

shows the representation of large structures or macrostructures by MR-PLBP. The resulting binary patterns 

as features of MR-PLBP can detect diverse image structures such as lines, edges, spots, corners at different 

scale and location. There will be fewer numbers of MR-PLBP code features when compared to basic LBP. A 

basic LBP will generate (N-1)*(M-1) LBP codes, whereas an MR-PLBP with a region size of R*S generates 

a total number of (N*M)/(R*S) LBP codes in a non-overlapped manner. 

 

 

4. RESULTS AND DISCUSSION 

The proposed MR-PLBP used three different databases i.e. Yale, Indian and AT&T ORL. The 

present paper considered 120 facial images out of 15 persons with 11 different facial expressions per person 

as training set from Yale database [31]. The present paper also considered 472 facial images as a training set 

from Indian database [32]. These 472 facial images correspond to 59 different individuals of both male and 

female, and on each individual 11 different expressions of Indian database. The present paper also considered 

320 facial images as a training set from AT&T ORL database [33] for face recognition. The present paper 

performed experiments by considering two cases for test database.  

Test Case 1: In case1 the remaining leftover facial images of the above three databases (which are 

not considered for the training set) are considered as test images. Test Case 2: In the second case the present 

paper considered the test images as a combination of leftover and training database images. 

For efficient face recognition, the present paper evaluated histograms of LBP, ULBP, PLBP, 

MPLBP and SPLBP with different region sizes on each individual facial image and placed in the training 

database. In a similar way the above histograms are evaluated for test facial image and the face recognition is 

evaluated based on Chi-Square distance method as given in Equation 2. 

 

             ∑ 

 

   

       
              (2) 
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where d, t are two image features (histogram vectors) and R(d,t) is the histogram distance for recognition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Face Recognition Rate for Yale Database for 

Test Case 1 

 

Figure 4. Face Recognition Rate for AT&T ORL 

Database for Test Case 1 

 

 

  

 

Figure 5. Face Recognition Rate for Indian Database 

for Test Case 1 

 

Figure 6. Face Recognition Rate for Yale Database for 

Test Case 2 

 

 

The graphs of Figure 3, Figure 4, and Figure 5 shows the face recognition rate for Yale, AT&T ORL 

and Indian databases for Test Case 1 with different region sizes. The same is also represented in graphs of 

Figure 6, Figure 7 and Figure 8 for Test Case 2. 

The following factors are noted down from the graphs of figures from Figure 3 to Figure 8. In the 

above graphs, the region size of 3*3 represents the basic representation of LBP with (8, 1).  

1. As the macro region increases the facial recognition rate increases slightly by the proposed MR 

PLBP and its variants i.e. MR-MPLBP and MR-SPLBP. This clearly reflects the fact that macro structure 

features are dominant in facial images and they are well captured by the proposed MR-PLBP, MR-SPLBP, 

and MR-MPLBP.  

2. The face recognition rate for AT&T ORL and Indian databases are high when compared to Yale 

database for case 1 and case 2. This is because the Yale database is prone to noise and illumination effects. 
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Figure 7. Face Recognition Rate for AT&T ORL 

Database for Test Case 2 

 

Figure 8. Face Recognition Rate for Indian Database 

for Test Case 2 

 

 

5. CONCLUSIONS 

In this paper, we proposed Multi Region Prominent Local Binary Pattern (MR-PLBP), MR-MPLBP 

and MR-SPLBP as a descriptor for face recognition to reflect the uniform appearance of the facial images. 

The Local Binary Pattern (LBP) is too local to be robust. Uniform patterns may not remain the same as those 

defined by Ojala et al [6] due to noise and they may not represent properly the stochastic information of 

textures. To describe fundamental and stochastic attributes efficiently, the present paper derived PLBP, 

MPLBP and SPLBP on the macro structures. Feature extraction for MR-PLBP is very fast using integral 

images. As the macro region increases the facial recognition rate increases slightly by the proposed  

MR-PLBP and its variants. This clearly reflects the fact macro structure features are dominant in facial 

images and they play a crucial role in face recognition than microstructure features. Moreover, our face 

recognition approach MR-SPLBP has shown very good performance on all databases with fewer uniform 

patterns and therefore it is more suitable for real time applications.  
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