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 This paper analyzes the subthreshold swing in asymmetric double gate 

MOSFETs with sub-20 nm channel lengths. The analysis of the carrier 

transport in the subthreshold region of these nano scaled MOSFET includes 

tunneling as an important additional mechanism to the thermionic emission. 

It is found that the subthreshold swing is increasing due to tunneling current 

and that the performance of nano scaled MOSFETs is degraded. The 

degradation of the subthreshold swing due to tunneling is quantified using 

analytical potential distribution and Wentzel–Kramers–Brillouin (WKB) 

approximation in this paper. This analytical approach is verified by two 

dimensional simulations. It is shown that the degradation of subthreshold 

swing increases with both reduction of channel length and increase of 

channel thickness. We also show that the subthreshold swing is increasing in 

case of different top and bottom gate oxide thicknesses. 
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1. INTRODUCTION 

Scaling down of silicon devices is continuing in the effort to improve the performance of integrated 

circuits, in particular related to operating speed and power consumption. The conventional MOSFET 

structure in CMOS integrated circuits is not suitable for nano-scaled channel lengths because of  serious short 

channel effects (SCEs) such as the subthreshold swing (SS) degradation, the threshold voltage shift, and 

drain induced barrier lowering (DIBL). The multiple gate MOSFET, which has the several gates around 

channel to improve the controllability of carriers in channel [1, 2], was developed to solve these problems. 

The double gate (DG) MOSFET, the simplest structure among the multiple gate MOSFETs, is of 

great importance [3, 4, 5]. In this paper, the subthreshold swing (SS) is investigated for sub-20 nm 

asymmetric DGMOSFETs, having different top and bottom gate structures. Because the tunneling current 

cannot be ignored in MOSFETs with sub-20 nm channel lengths, the thermionic and tunneling currents have 

to be included when analyzing the carrier transport.  The study in this paper is focused on the degradation of 

SS due to tunneling current for sub-20 nm asymmetric DGMOSFETs.  To obtain subthreshold swing model, 

we use the potential model of Ding et al., [6] and the tunneling probability derived from the  

Wentzel-Kramers-Brillouin (WKB) approximation. 

Section 2 shows the potential distribution and subthreshold swing model of asymmetric 

DGMOSFET. Section 3 describes the channel-dimension-dependent subthreshold swing with the top and 

bottom oxide thicknesses as the relevant parameters.  Section 4 presents our conclusions. 
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2. THE POTENTIAL DISTRIBUTION AND SUBTHRESHOLD SWING MODEL FOR 

ASYMMETRIC DOUBLE GATE MOSFET 

Figure 1 shows the cross-sectional diagram of an asymmetric DGMOSFET. As can be seen from the 

labels in the Figure, the top (tox1) and the bottom (tox2) gate oxide thicknesses can have different values due to 

different fabrication steps. First, Poisson equation has to be solved. 

 

 

 
 

Figure 1. Schematic Cross-Sectional Diagram of Asymmetric DGMOSFET 
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In Equation (1) εsi is the permittivity of silicon and Na is the doping concentration in the channel. 

The boundary conditions of Ding et al. are used to solve Equation (1). The subthreshold swing model for the 

subthreshold current consists of thermionic and tunneling currents: 
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where Ither is the thermionic current, Itunn is the tunneling current, and Itotal is the sum of thermionic and 

tunneling currents. We use the potential model of Ding et al. and the WKB approximation, to obtain the SS 

of sub-20 nm asymmetric DGMOSFET, to be expressed as Equation (2) in accordance with channel length 

and thickness with parameters of top and bottom oxide thicknesses. 

The first derivative of the thermionic current for the top-gate voltage is 
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                   by the Boltzmann distribution, where    is the intrinsic electron 

concentration, k is the Boltzmann constant,    is the thermal voltage, and      is the minimum channel 

potential to be found from the condition         with        derived from Equation (1). The effective 

current path      [7] is substituted for   in Equation (3). The               is according to reference [6]. 

The first derivative of tunneling current for the top gate voltage is 
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   and    are the tunneling probability for electrons with transverse effective mass    and longitudinal   , 

respectively, derived from Equation (5),      and      are the transverse and longitudinal electron velocities, 

and    is the doping concentration in the source and drain. The    and    are points where the potential 

energy is equal to the Fermi level     at end of the source and drain, and h is Planck constant. The SS of 

sub-20 nm asymmetric DGMOSFET, defined by Equation (2), is investigated with respect to the channel 

length and thickness, and the top and bottom oxide thicknesses as the parameters. 

 

 

3. CHANNEL-DIMENSION-DEPENDENT SUBTHRESHOLD SWINGS OF ASYMMETRIC 

DGMOSFET 

Figure 2 shows the variation of SSs as a function of channel length in the sub-20 nm region for 

tsi=1.5 nm, tox1=tox2=1.5 nm, Na=10
16

cm
-3

, and Vgf=Vgb=0.1 V. The SSs of the proposed model agree well 

with 2D numerical simulation [8], as shown in Figure 2. The degradation of SS is larger for shorter channels 

due to short-channel effects. Comparing SSs with and without tunneling current in the range of sub-10 nm, it 

can be seen that SSs with the tunneling current are larger than those without tunneling because tunneling 

current becomes more significant when the channel length is shorter. The SSs with and without tunnelling are 

similar for the channel lengths above 10 nm because the thermionic current is dominant in this region. The 

inset in Figure 2 shows the variation of potential energy as a function of channel length. Even though the 

reduction of the maximum of potential energy for smaller channel lengths causes an increase in thermionic 

current, we observe that the increase in tunneling current due to decreases width of the potential energy is 

dominant under 10 nm of channel length. Figure 2 shows the degradation of SSs by increase of subthreshold 

current in the subthreshold region due to the domination of tunneling current. 

 

 

 
 

Figure 2. Comparison of SSs Obtained by 2D simulation [8] and this Study for Asymmetric DGMOSFETs 

 

 

Asymmetric DGMOSFET can be fabricated with different top and bottom oxide thicknesses. Figure 

3 shows SSs as a function of channel length in the case of equal and different thicknesses of the top and the 

bottom oxide. It can be seen that the asymmetric DGMOSFETs show larger SSs than those with the 

symmetric structure. It can also be seen in Figure 3 that SSs increase with increase of channel thickness, 

regardless of existence of tunneling current. The smaller channel thickness does not show a large difference 

for SSs between the symmetric and asymmetric structures, whereas a smaller channel length causes larger 

difference for SSs between symmetric and asymmetric DGMOSFET due to SCEs. 

Figure 4 shows the contours of SSs for channel length and thickness with the top and bottom oxide 

thicknesses as the parameters. The SSs for the symmetric DGMOSFETs are smaller than those for 

asymmetric DGMOSFETs. The variation of SSs is significant in the case of SSs without tunneling current, 

but SSs of symmetric and asymmetric DGMOSFET is nearly equal regardless of the inclusion of tunneling 

current for channel lengths above 10 nm. The SSs increase in the region of small channel lengths. As can be 

seen in Figure 4a, it appears that SSs for small channel lengths can be reduced by a reduction in channel 

thickness. However, this is only the case if the tunnelling current is not included in the calculation. Figure 4b 

shows that the inclusion of tunnelling current leads to SS values that are almost independent of the channel 

thickness when the channel lengths are very small. Furthermore, there is no longer a difference between SSs 
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in the cases of symmetric and assymetric DGMOSFETs. These effects are due to the dominance of tunnelling 

current at very small channel lengths.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Subthreshold Swings as Functions of Channel Length with Channel Thickness as a Parameter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Subthreshold-Swing Contours for Channel Length and Thickness, with the Top and Bottom Oxide 

Thicknesses as Parameters.  

 

 

4. CONCLUSION  

A model for analyzing SSs of sub-20 nm asymmetric DGMOSFETs including tunneling current is 

proposed in this paper. The SSs obtained by this model have been compared to 2D numerical simulations to 

verify the model. The model of Ding et al. for thermionic current and WKB approximation for tunneling 

current are used in the subthreshold region of asymmetric DGMOSFET with channel lengths below 20 nm.  

Comparing DGMOSFETs with symmetric and asymmetric structures, the SSs of symmetric DGMOSFETs 

are lower than those of asymmetric. The thicker channel thickness is, the larger SSs becomes in the case of 
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both symmetric and asymmetric structures. The results show that, in the case of included tunneling current, 

SSs are more dependent on channel length than thickness in the region of channel lengths below 10 nm. 

 

 

REFERENCES 
[1] T. Nagumo and T. Hiramoto, “Design Guideline of Multi-Gate MOSFETs with Substrate-Bias Conrol”, IEEE 

Trans. Electron Devices, vol. 53, pp. 3025-3031, 2006. 

[2] J. Nam, C. Kang, K. Kim, H. Yeo, B. Lee, S. Seo and J. Yang, “Influence of Ionizing Radiation on Short-Channel 

Effects in Low-Doped Multi-Gate MOSFETs”, IEEE Trans. Nuclear Science, vol.59, pp. 3021-2026, 2012. 

[3] T. Bentricia, F. Djeffal, E. Chebaki and D. Arar, “Impact of the drain and source extentions on nanoscale Double-

Gate Junctionless MOSFET analog and RF performances”, Materials Science in Semiconductor Processing, vol. 

42, pp. 264-267, 2016. 

[4] M. Chanda, S. De and C.K. Sarkar, “Modeling of characteristic parameters for nano-scale junctionless double gate 

MOSFET considering quantum mechanical effect”, J. Comput. Electron, vol. 14, pp. 262-269, 2015. 

[5] S. F. Najam, M.L.P. Tan and Y.S. Yu, “General SPICE Modeling Procedure for Double-Gate Tunnel Field-Effect 

Transistors”, J. Inf. Commun. Converg. Eng., vol. 14, no. 2, pp. 115-121, 2016. 

[6] Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang and T. Tang, “An analytical model for channel potential and subthreshold 

swing of the symmetric and asymmetric double-gate MOSFETs”, Microelectronics J., vol. 42, pp. 515-519, 2011. 

[7] S. Dubey, P.K. Tiwari and S. Jit, “A two-dimensional model for the subthreshold swing of short-channel double-

gate metal-oxide-semiconductor field effect transistors with a vertical Gaussian-like doing profile”, J. of Applied 

Physics, vol. 109, p. 054508, 2011. 

[8] D. Munteanu and J.L. Autran, “Two-dimensional modeling of quantum ballistic transport in ultimate double-gate 

SOI devices”, Solid State Electron., vol.47, pp. 1219-1225, 2003. 

 

 

BIOGRAPHIES OF AUTHORS 

 

  

Prof. Hak Kee Jung received the B.S. degree from Ajou University, Korea, in 1983, the M.S. 

and Ph.D. degrees from Yonsei University, Seoul, Korea, in 1985, 1990, respectively, all in 

electronic engineering. In 1990, he joined Kunsan National University, Chonbuk, Korea, where 

he is currently a Professor in department of electronic engineering. From 1994 to 1995, he held a 

research position with the Electronic Engineering Department, Osaka University, Osaka, Japan. 

From 2004 to 2005, he was with the School of Microelectronic Engineering, Griffith University, 

Nathan, QLD, Australia. His research interests include semiconductor device physics and device 

modeling with a strong emphasis on quantum transport and Monte Carlo simulations. 

  

  

Prof. Sima Dimitrijev received the B.Eng., M.Sci. and Ph.D. degrees in electronic engineering 

from the University of Nis, Nis, Yugoslavia, in 1982, 1985, and 1989, respectively. From 1982 

to 1983, he was with the Semiconductor Factory of the Electronics Industry, Nis, where he 

worked on the development of CMOS technology. From 1983 to 1990, he was with the Faculty 

of Electronic Engineering, University of Nis. In 1990, he joined Griffith University, Brisbane, 

Australia, where he is currently a Professor at the Griffith School of Engineering and the Deputy 

Director of Queensland Micro- and Nanotechnology Centre. He is the author of Principles of 

Semiconductor Devices, 2nd Ed. (New York: Oxford University Press, 2011) and a member of 

the Editorial Board of Microelectronics Reliability. 

 


