
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 6, No. 6, December 2016, pp. 2716~2729 

ISSN: 2088-8708, DOI: 10.11591/ijece.v6i6.12094      2716 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Improvement of Tuning Fork Gyroscope Drive-mode 

Oscillation Matched using a Differential Driving Suspension 

Frame 
 

 

Thang Nguyen Van
1
, Tran-Duc Tan

2
, Hung Vu Ngoc

3
, Trinh Chu Duc

4
 

1Broadcasting College I, Radio the voice of Vietnam 
2,4University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam 

3University of Science and Technology, Hanoi, Vietnam 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 5, 2016 

Revised Sep 30, 2016 

Accepted Oct 13, 2016 

 This paper presents a novel design of a vibration tuning fork gyroscope 

(TFG) based on a differential driving suspension coupling spring between 

two gyroscopes. The proposed TFG is equivalent to a transistor differential 

amplifier circuit. The mechanical vibrations of driving frames are, therefore, 

well matched. The matching level depends on stiffness of spring. When three 

various TFG structures respond to differential stiffness of spring, their the 

driving frame mechanical vibration is well matched in case the input 

excitation driving differential phase is less than 3.5, 2.5, and 4, 

respectively. The fabricated tuning fork gyroscope linearly operates in the 

range from -200 to +200 degree/s with the resolution of about  

0.45 mV/degree/s. 

Keyword: 

Differential driving suspension 

coupling spring 

Differential MEMS gyroscope 

Electronics differential 

amplifier 

Vibration tuning fork gyroscope 

Copyright © 2016 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Thang Nguyen Van,  

Faculty of Electronics and Communications Technology, 

Broadcasting College 1, 

136 Quy Luu Road, Phu Ly City, Ha Nam Province, Vietnam. 

Email: nguyenbathangvov@gmail.com 

 

 

1. INTRODUCTION 

Nowadays, micromachined gyroscope in general and vibratory tuning fork gyroscope in particular 

are very popularly utilized in reality [1-4]. In many applications, performance and operation of gyroscope 

and TFGs are affected by a wide variety of changing environmental conditions such as pressure, ambient 

vibrations, and temperature [5-7]. The robustness of sensors and beams to these external influences during 

operation is critical for adequate performance [8].  

All micromachined vibratory gyroscopes can be divided into two various types: Type I and  

Type II [9]. The working principle of all of them is based on the Coriolis force produced by rotation of the 

gyroscope causing a transfer of energy between two of the gyroscope’ modes of vibration. A new MEMS 

gyroscope design can improve performance of angle measurement implemented in [10] while the other is 

developed to either upgrade the performance or reduce the cost [11]. Besides that, there are also some other 

optimal MEMS gyroscope structures such as micromachined ring or disk designed to obtain the better 

precision [12-13]. A detailed analysis of the cause of vibration-induced error is implemented to understand 

the vibration effects on ideal tuning fork gyroscopes [5]. The article points out three major causes of error 

that arise from capacitive nonlinearity at the sense electrode, asymmetric electrostatic forces along sense 

direction at the drive electrodes and asymmetric electrostatic forces along drive direction at the drive 

electrodes. Reference [14] utilizes symmetrically decoupled tines with drive-mode synchronization and 

sense-mode coupling structures. The levered drive-mode mechanism structurally forces the anti-parallel, anti-

phase drive-mode motion and eliminates the lower frequency spurious mode presented in conventional 
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tuning fork gyroscopes. The linearly coupled, momentum and torque balanced anti-phase sense-mode 

reduces dissipation of energy through the substrate yielding ultra-high quality factors. A completely 

symmetric, dynamically balanced quadruple mass gyroscope with a 2.2 kHz operational frequency illustrated 

virtually identical drive and sense mode Q-factors of 0.9 million. The most important thing in the quadruple 

mass design is to be expected to enable rate-integrating mode of operation due to its unique combination of 

low energy dissipation and isotropy of both the resonant frequency and damping [15]. A novel micro-

machined dual-axis TFG could effectively minimize the undesired lateral motion and ensure the anti-phase 

resonant mode of the two vibration frames [16]. A capacitive-type tuning fork micro-gyroscope is developed 

in [17]. A novel   quad mass gyroscope in [18-19] is designed and fabricated in order to increase the gap 

between two resonance modes and reduce the energy transfer between the two modes, allowing for 

robustness to external acceleration. 

However, there are not any studies mentioning and analyzing about the importance and the role of 

differential driving suspension coupling spring and suspension beams between two gyroscopes in 

conventional tuning fork gyroscope.  

This paper presents a novel design of a vibration tuning fork gyroscope based on a differential 

driving suspension coupling spring between the two driving frames of TFGs. Therefore, the mechanical 

vibrations of driving frames are well matched. It means that the differential driving suspension coupling 

spring can compensate differential phase shift of two input excitation driving signals allowing the TFG to 

work normally. 

 

 

2. TUNING FORK GYROSCOPE AND DIFFERENTIAL AMPLIER 

2.1.  Gyroscope 

A 2-DOF vibratory rate gyroscope is shown in figure 1. In fact, it is comprised of a proof mass 

suspended above the substrate and the proof-mass is supported by anchored flexures which play the role of a 

flexible suspension between the substrate and the proof-mass, allowing the proof-mass free to oscillate in two 

orthogonal directions (the drive and sense directions). In the drive mode, the suspension system allows the 

proof-mass to oscillate in the drive direction. The proof-mass is driven into resonance in the drive direction 

by an external sinusoidal force at resonant frequency of the drive mode. The sense mode accelerometer is 

formed by the proof-mass. The system of suspension allows the proof-mass to oscillate in the sense direction. 

In case gyroscope is subjected to an angular rotation, a sinusoidal Coriolis force at the frequency of drive 

mode oscillation is induced in the sense direction. The Coriolis force excites the sense mode accelerometer, 

causing the proof-mass to respond in the sense direction [8]. 

 

 

 
 

Figure 1. A 2-DOF Vibratory Rate Gyroscope 

 

 

2.2.  Vibration Rate Tuning Fork Gyroscope Model 

The single mass vibratory rate gyroscope with conventional drive and sense mode oscillations is 

very sensitive to variations in system parameters that shift the drive or sense resonant frequencies [8]. Instead 

of single mass, TFG uses a pair of masses driven to resonance. TFG realizes the Coriolis acceleration to 

improve the sensitivity by using a differential suspended masses structure.     

Working principle of the TFG can be compared with the electronics differential amplifier based on 

two transistors and a current source, see Figure 2. 
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Figure 2. The Electronics Differential Amplifier Basing on Two Transistors and a Current Source 

 

 

In Figure 2, the differential pair amplifier is formed from the same name two transistors, where their 

emitters are connected together. The shared emitter node is fed from a constant current source. The two base 

inputs can be applied a differential input signal and the two outputs from the collectors remain balanced.  

As a transistor amplifies the current flowing between base and emitter, it follows that the current 

flowing in the collector circuit of the first transistor is proportional to the difference between the two inputs. 

However, since the circuit is totally symmetrical, the element can be viewed either as an amplifier or as an 

emitter follower, understanding does not depend on which role you assign to which device. The common-

mode rejection ratio (CMRR) of the differential amplifier is linearly related on the current source resistance 

Re [20], whose value is ideally infinite. Therefore, in general, the CMRR parameter of a differential amplifier 

is extremely large in comparing with a single stage amplifier. The CMRR is up to hundred thousand or even 

more in some cases. Hence, the differential signal between the two inputs is much amplified and the common 

signal is rejected.  

Based on the working principle of the electronic differential amplifier, a TFG with differential 

suspended driving masses is proposed (see Figure 3). 

 

 

 
 

Figure 3. TFG with two differential suspended driving masses 

 

 

In this structure, two driving masses are hanged on Kx springs. They allow driving masses to 

oscillate only on the x-axis. The diamond frame with two Ky springs play a role as the current source on the 

electronic amplifier. By using this diamond suspension, the two driving masses oscillate with same amplitude 

but phase reversal. The proposed TFG, therefore, improves the sensitivity and much rejects the common-

mode noise from both driving and sensing sections. 

http://en.wikipedia.org/wiki/Constant_current
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3. DIFFERENTIAL DRIVING OSCILLATED TFG DESIGN 

Figure 4 shows 2-DOF design of a proposed single gyroscope. The driving frame is suspended on 

the x-axis springs. Capacitive actuator drives the frame to oscillate on driving resonant frequency. The 

sensing mass is hanged on the driving frame by using two y-axis springs. In case of having excited driving 

signals, the driving frame oscillates along the x-axis. When gyroscope is effected by ω angular rate, the 

sensing frame oscillates along the y-axis thanks to two ellipse shape y-axis springs. 

The driving oscillation is excited by applying a voltage to capacitor pairs. In the case of driving 

function simulation, a mechanic force can be directly applied to drive comb frames. 

In this work, the designed parameters of the single gyroscope are shown in the table 1. Several 

eigenfrequencies are listed in the Table 2. The first oscillation mode with frequency of 13544.7 Hz is the 

driving resonant oscillation one. Therefore, the driving proof-mass always obtains the maximum amplitude 

displacement when applying this resonant frequency as the excited signal. The rest modes in the Table 2 are 

unwanted driving and sensing oscillations. Mass of driving proof-mass (including of 0.9408×10e-11 kg 

sensing proof-mass) is 0.5452×10e-7 kg. The stiffness of drive mode springs Kd= 347 N/m (including eights 

springs) and the stiffness of sense mode springs Ks = 540 N/m (including two ellipse shape springs). 

 

 

 
 

Figure 4. The Proposed Gyroscope: (1) Drive Springs, (2) Sense Springs, (3) Drive Capacitor Pairs,  

(4) Drive Comb Frame 

 

 

Table 1. The Proposed Gyroscope Structure Parameters 
Parameter Symbol Value 

Real gyroscope height H 1754 µm 

Real gyroscope width W 1644 µm 

Device thickness t 30 µm 

Outer frame height hdpm 1200 µm 
Outer frame width wdpm 1300 µm 

Inner frame height hspm 840µm 

Inner frame width wspm 940 µm 
Drive sub-suspension beam height h1 190 µm 

Drive main suspension beam height h2 260 µm 

Drive suspension beam width w1 6 µm 
Anchor size w2 × h3 40 µm × 40 µm 

Number of drive comb frames  8 

Drive comb frame height h5 200 µm 
Drive comb frame width w3 25 µm 

Number of comb fingers in a drive comb frame  15 

Drive comb finger size w4 × h4 50 µm × 3 µm 
Drive comb finger gap  2.5 µm 

Gap between two comb fingers in the same frame g 8 µm 

Drive finger overlap length ldfo 10 µm 
Ellipse 1 sense suspension beam size a1 × b1 150 µm × 20 µm 

Ellipse 2 sense suspension beam size a2 × b2 144 µm × 14 µm 

Drive mass md 0.5452 × 10-7 Kg 
Sense mass ms 0.9408 × 10-11 Kg 

Drive mode stiffness Kd 347 N/m 

Sense mode stiffness Ks 540 N/m 
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Table 2. Several Oscillation Modes of Proposed Gyroscope 
Oscillation modes Frequency (Hz) 

First (driving mode) 13544.7 
Second 62268.7 

Third 106921.8 

Fourth 140865.5 

 

 

This paper introduces a differential suspension structure which allows two driving proof-masses to 

create mechanic differential displacement along the x-axis. The suspension structure is shown in figure 5 and 

the designed parameters are listed in the table 3. The eight anchors constrain structure to move along y-axis 

only. The x-axis stiffness is 121 N/m and the y-axis stiffness is 2314 N/m.  

 

 

 
 

Figure 5. The structure of Differential Driving Suspension Coupling Spring 

 

 

Table 3. The Designed Parameters of the Differential Driving Suspension Coupling Spring 
Parameter Value 

R1 Width × Height: 132 µm × 100 µm 
R2 Width × Height: 70 µm × 20 µm 

R3 Width × Height: 60 µm × 600 µm 

R4 Width × Height: 60 µm × 20 µm 
R5 Width × Height: 60 µm × 80 µm 

R6 Width × Height: 500 µm × 6 µm 

R7 Width × Height: 200 µm × 6 µm 

Total size Width × Height: 1000 µm × 1700 µm 

Rotation angle of R3 30 degree 
Anchor size Width × Height: 40 µm × 40 µm 

Structure thickness 30 µm 

x-axis stiffness  121 N/m 
y-axis stiffness  2314 N/m 

 

 

Two single gyroscopes are linked by the differential driving suspension coupling spring to form 

proposed tuning fork gyroscope (see figure 6). This design constrains the two top and bottom corners A and 

B moving along y-direction only thanks to anchors. The two rest corners C and D are connected to the two 

driving frames. When having excited driving signals with the same amplitude but phase reversal put in two 

single gyroscopes, two driving frames will also move with the same amplitude but phase reversal. Thanks to 

the differential driving suspension coupling spring, the oscillation of two driving frames is always 

compensated each other. If appearing excited driving signals are phase mismatch (non-phase reversal), the 

differential driving suspension coupling spring will compensate the driving oscillation like the electronic 

differential amplifier. Therefore, the mismatched oscillation components are eliminated and the matched ones 

are amplified. In the special case, the excited signal is only applied in the left or the right driving frame of the 

gyroscope, the TFG still works normally due to the differential driving suspension coupling spring 

suspension girder structure. This proposed structure will deliver driving oscillation to both the driving frames 
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thanks to its symmetrical design. However, oscillation amplitude of the two driving frames of the gyroscope 

is smaller when both two driving frames are excited.  

In this the proposed TFG, the drive mode stiffness of whole system KdTFG = 1700 N/m. The 

outermost device area is 4000 µm × 1900 µm with 30 µm thick device layer. Materials used in this design 

and simulation are polysilicon and air. Where, the TFG is made by polysilicon and surrounding by air. 

 

 

 
 

Figure 6. Design of the Proposed Tuning Fork Gyroscope. Two Driving Frame are Connected Together by a 

Differential Driving Suspension Coupling Spring 

 

 

As mentioned in section 2.2, the proposed TFG improves the sensitivity and much rejects the 

common-mode noise from both driving and sensing sections. Hence, the particular purpose of this study is to 

demonstrate that the two single gyroscopes correspond to the two BJT common emitter amplifiers and the 

differential driving suspension coupling spring corresponds to the constant current source in the electronic 

differential amplifier. The diamond coupling spring can compensate the differential phase of two driving 

excited signals. It means that when two excited signals applied into driving comb frames of two gyroscopes 

are differential to a certain value, the differential phase of mechanical oscillation of two driving frames is still 

constant. The common vibration mode between the two driving frames is ignored when the differential 

vibration mode is much amplified.   

Figure 7 shows a SEM picture of fabricated devices based on SOI substrate and Deep-RIE silicon 

etching with one mask fabrication process. 

 

 

 
 

Figure 7. A SEM Picture of Fabricated Gyroscope 

 

 

4. SIMULATION 

Whole designed and simulation processes are implemented in a finite element modeling software 

COMSOL MULTIPHYSICS 4.4 (COMSOL Inc.). This software can be used in a lot of application areas 

such as Microelectromechanical systems (MEMS); Structural mechanics; heat transfer; Microfluidics etc. 

Physics interfaces in COMSOL allow performing various types of studies including: stationary and  
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time-dependent (transient) studies; linear and nonlinear studies; eigenfrequency, modal, and frequency 

response studies. 

Materials utilized in this work are polysilicon and air. Excited signals can be force (N) or voltage 

potentials (V) with various kinds of waveform such as sinusoidal, triangular, trapezoid. However, in order to 

implement and simulate faster and simpler, instead of voltage potentials, a force function is directly applied 

to the driving frame. Eigenfrequencies; stiffness; displacement of single gyroscope, differential driving 

suspension coupling springs and the TFG are then simply extracted from simulation results. 

 

 

5. RESULTS AND DISCUSSION 

Before demonstrating that the proposed TFG has differential phase compensation ability between 

two input excited signals, it needs to build some TFG architectures corresponding to various stiffness of the 

differential driving suspension coupling spring. The main purpose of building various architectures is to find 

a certain differential phase value of two input excited driving signals that the proposed TFG can compensate.  

However, in order to obtain maximum displacements of drive proof-mass and sense proof-mass, it 

needs to use the most suitable frequency in the excited signal equations. In this case, it is the driving resonant 

frequency of the TFG. This frequency can be found via finite element method in Comsol Multiphysics 

software version 4.4 (Study/Study steps/Eigenfrequency/Eigenfrequency). 

Some finite element analysis results of the single gyroscope achieved by COMSOL are shown in 

Figure 8. Eigenfrequencies are shown in Table 2. 

 

 

 
 

(a) 

 
 

(b) 

 

 
 

(c) 

 
 

(d) 

 

Figure 8. The Finite Element Analysis Result of Gyroscope Obtained by COMSOL: Driving Mode (a); Some 

other Modes (b, c, d) 
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In this simulation, the stiffness of the differential driving suspension coupling spring between two 

gyroscopes is changed to get the optimal value. Specifically, the heights of the coupling suspension beam R6 

in Figure 8 of structure 1, 2, 3 are 6 µm, 4 µm, 12 µm, respectively while the rest parameters of structures are 

unchanged.  

Some finite element analysis results of the first proposed TFG (structure 1) achieved by COMSOL 

are shown in Figure 9 (the similar way is implemented with the second and the third TFGs). Some oscillation 

modes of three structures are shown in the Table 4.  

 

 

 
 

(a) 

 

 
 

(b) 

 

 
 

(c) 

 
 

(d) 

 

Figure 9. The Finite Element Analysis Result of TFG Structure 1 Obtained by COMSOL: Driving Mode (a); 

other Modes (b, c, d) 

 

 

Table 4. Lowest Driving Related Oscillation Modes of Three TFG Structures 

Modes 
Frequency (Hz) 

Structure 1 Structure 2 Structure 3 

First (Driving mode) 21397.9 21184.7 21751.2 
Second 44446.8 44227.6 44801.3 

Third 63436.5 63427.9 63447.1 

Fourth 65032.2 65020.9 65049.6 

 

 

The parameters in the table 4 show that the stiffer the differential driving suspension coupling spring 

is, the higher the driving consonant frequency of TFG is and vice versa. Driving resonant frequency of the 

first structure is shown in Figure 10. During the simulating process, the structures have the same mesh 

settings: sequence type is physics-controlled mesh and element size is extremely coarse. The structure is 

designed by polysilicon material and assumed to be immersed in air. 
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The two driving excitation signals are applied to the driving combs having formulas: 

 

       (        )  (1) 

       (          )  (2) 

 

where f1 signal is put in eight driving comb frames of gyroscope on the left and f2 signal is put in eight 

driving comb frames of gyroscope on the right. 

 The process of simulating results is individually performed for each above structure. So, f 

frequency in Equation 1 and Equation 2 is the driving eigenfrequency (the driving resonant frequency) 

correspondent to each structure. For example, f = 21397.9 Hz is applied to structure 1. In the conventional 

working principle of the tuning fork gyroscope, the f1 and f2 two excited signals are anti-phase. It means that 

φ =180 degree. 

 

 

 
 

Figure 10. Driving Resonant Frequency of the Proposed Architecture 1 

 

 

However, in this study the excitation signal f1 is kept stable while f2 is changed with various φ phase: 

180, 179.5, 179, 178.5, 178 etc. in a computing time of a specific structure. 

The aim of changing φin f2 is to observe mechanical vibration differential phase of two driving 

proof-masses in order to determine differential phase compensation ability of the proposed TFGs when 

having the differential phase between two input excitation signals.   

Figure 11 shows an x-axis simulated displacement profile of the first TFG (structure 1) at the time of 

5e-4 s (Figure 11a) and 5.12e-4 s (Figure 11b). It indicates that the mechanical vibrations of the two driving 

frames are well matched. 

 

 

 
 

(a) 

 
 

(b) 

 

Figure 11. Simulated Displacement Profile of the Proposed TFG 
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Table 5 shows the relation between input excited signal differential phase φ and mechanical 

displacement signal differential phase φ1 in three structures. These results are drawn in Figure 12. 

 

 

Table 5. Relation between φ and φ1 
φ 1 

   φ 
Structure 1 Structure 2 Structure 3 

180°/0° 0 0 0 

179.5°/0.5° 0 0 0 

179°/1° 0 0 0 
178.5°/1.5° 0 0 0 

178°/2° 0 0 0 

177.5°/2.5° 0 0 0 
177°/3° 0 3.5 0 

176.5°/3.5° 0 7.0 0 

176°/4° 3.9 15 0 
175.5°/4.5° 18.2 x 15.6 

Unit: Degree 
 

 
 

Figure 12. Mechanical Vibration Differential Phase between Two Driving Frames Versus Electrical Driving 

Phase Difference 
 

 

Above results shows that the mechanical vibration is well matched when the driving excitation 

phase different is less than 3.5, 2.5 and 4 corresponding to structure 1, 2 and 3, respectively with driving 

signal of 1 N amplitude and 0 N offset. The mechanical vibrations of two driving frames are not compensated 

for the excited driving differential phase more than 3.5, 2.5 and 4 corresponding to structure 1, 2 and 3. In 

this case, the mechanical vibration is fully dominated by the excited signal. Basing on the results of the three 

structures, the structure 3 is the best one thanks to the wide range of the excited driving differential phase up 

to 4. However, the resonant frequency of this structure is also the highest (see Table 4). 

 

 
Figure 13. Driving Proof-Mass Displacement of the Proposed TFG 
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Figure 13 points out the displaced magnitude and signal shape of driving proof-mass of the left 

gyroscope of the proposed TFG (the displacement of driving proof-mass of the right gyroscope has the same 

magnitude and is anti-phase with the left one – not shown here). In the case of structure 1, the results show 

that in the period of 2.8 × 10
-3 

s, oscillation amplitude gradually increases from 0 to about 1.9 µm (from 0 to 

about 0.9 × 10
-3 

s). After this period, the structure is approached stable state. The oscillation amplitude is 

about 1.9 µm. 

In order to determine the displaced magnitude of sensing proof-mass, in this study, the angular rate 

ω is changed by sinusoidal signal (Figure 14a); triangular signal (Figure 15a) and trapezoid signal, 

respectively (Figure 16a) while the driving excited signals are still constant as shown in Equation 1 and 

Equation 2 (using structure 1). The oscillation amplitudes of sensing proof-mass corresponding to the above 

signals are shown in Figure 14b, Figure 15b and Figure 16b, respectively. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)              (b) 

 

Figure 14. Mechanical Displacement of Sensing Proof-Mass (b) when Having Sinusoidal Angular Rate (a) 

 

 
(a) 

 
(b) 

 

Figure 15. Mechanical Displacement Of Sensing Proof-Mass (b) when Having Triangular Angular Rate (a) 

 

 

The simulation results in Figure 13 to Figure 16 show responses of the proposed TFG with a rather 

highly stable oscillation amplitudes of drive proof-mass and sense proof-mass. Figure 17 shows the measured 

output voltage versus input angular rate of the proposed tuning fork gyroscope. The sensor linearly operates 

in the range from -200 to +200 degree/s with output voltage of -0.09 V to +0.09 V, respectively. The sensor 

resolution is about 0.45 mV/degree/s. The further measurement of the fabricated sensor will be implemented 

for investigating the mechanical, electrical properties, and time response. 
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(a) 

 
(b) 

 

Figure 16. Mechanical displacement of sensing proof-mass (b) when having trapezoid angular rate (a) 

 

 

 
 

Figure 17. Output Voltage Versus Input Angular Rate 
 

 

6. CONCLUSION 

A novel tuning fork gyroscope with a differential suspension structure between two driving frames 

are designed, fabricated and characterized. The driving frame mechanical vibration is well matched when the 

electrical driving differential phase is less than 3.5 in structure 1; 2.5 in structure 2; 4 in structure 3. The 

differential gained parameters are, therefore, much improved when the common vibration modes between the 

two driving frames are ignored. The fabricated tuning fork gyroscope linearly operates in the range from -200 

to +200 degree/s with resolution of about 0.45 mV/degree/s. 
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