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 The critical activity of testing is the systematic selection of suitable test 
cases, which is able to reveal highly the faults. Therefore, mutation coverage 
is an effective criterion for generating test data. Since the test data generation 
process is very labor intensive, time-consuming and error-prone when done 
manually, the automation of this process is highly aspired. The researches 
about automatic test data generation contributed a set of tools, approaches, 
development and empirical results. This paperanalyzes and conducts a 
comprehensive survey on generating test data based on mutation. The paper 
also analyzes the trends in this field. 
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1. INTRODUCTION 

Software testing is an important means used to assure the quality of software. However, testing is an 
expensive, tedious and time-consuming activity as it can consume more than 50% of the total cost of the 
software development [1]. Automatic test data generation is one of the approaches to improve the accuracy as 
well as to reduce the cost of testing activity. The effectiveness of test data is measured by the ability to reveal 
the undetected faults in software. However, complete testing is infeasible due to the vast input spaces 
involved and a lot of constraints on the test set. In order to overcome these limitations, criteria are used to 
provide a requirement for test data adequacy, and so give a measure for improving a test set. The compliance 
with a certain standard will generate adequate test sets and thus it is able to expose the faults existing in the 
program under test (PUT). Adequacy criteria are usually relevant to test coverage. This coverage is used to 
guide search process as well as assess the quality of the obtained test set. Coverage measures may be 
classified into two main categories: structure based and mutation-based coverage criteria. 

The structure coverage specifies testing requirements in terms of the coverage of a particular set of 
elements in the program and includes control-flow and data-flow based criteria. However, these criteria do 
not focus on the cause of program's failures, while the mutation adequacy criterion does. In fact, mutation 
coverage provides a measure of test data effectiveness by showing that the tests can expose all possible 
simple faults of a program. De Millo et al., [2] proposed mutation testing to provide a means of iteratively 
improving test data adequacy for PUT. 

Based on the mutation adequacy criterion, fault induced variants of the program are executed with a 
test set to find out how many variants fail. The more that fail, the greater the adequacy of that test set. The 
tester's aim is to generate new test data that improves the adequacy of the existing tests. Mutation coverage 
subsumes many structural coverage criteria. It may detect faults that structural testing cannot discover [3]. 
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There are some excellent surveys of test data generation techniques, such as [4], [5], [6], [7]. However, all of 
them used the structure coverage to generate test suites. This workconsiders the approaches using mutation 
analysis to identify a set of test data that maximizes the number of mutants killed. In other words, the paper 
targets to analyze and discuss an overview of test data generation methodswhich have been used in the 
mutation testing domain. Our research aims to answer two following questions: 

+ Q1: What methodshave been used for test data generation using mutation analysis? 
+ Q2: How can these test data generation methodsbe categorized? 
The organization of the paper is as follows. Section 2 introduces the background of mutation-based 

test data generation. The particular methods will be presented in section 3. In section 4, some challenges and 
future trends in test data generation will be discussed. Section 5 is the conclusion and general assessment 
about methods. 
 
 
2. BACKGROUND OF TEST DATA GENERATION BASED ON MUTATION ANALYSIS 

Mutation analysis supports software testing by assessing the quality of test sets as well as creating 
the test data that can detect faults in program. In this testing process, faults are inserted into PUT. The 
resulting changed versions of the test program are called mutants. Each variant, or mutant, differs from the 
PUT by a small amount, such as a single lexeme, and is generated by a mutation operator. Mutation operators 
can be seen as representing common faults usually found in software. Thus, mutation operators are designed 
by basing on the most common faults committed by programmers when using a programming language. 
Figure 1 presents an example about the original program and its mutant program when applying the relational 
operator replacement operator. 

Mutation-based test data generation proceeds by injecting syntactic mutations into a given program 
P, generating from P a set M of mutants. The goal of this activity is to find a set of test-cases that kill each of 
the mutant mM. This means that the test-case makes the mutant m produce outputs that differ from those of 
the original program P. For the above example, test data (x = 5, y = 5) is able to detect the mutant because the 
output of the original program is 10 whereas the output of the mutant is 0. However, test data (x = 5, y = 4) 
cannot detect this mutant due to the same output produced for both programs. 

 
 

int foo (int x, int y) 
{ 
int z = 0; 
       if (x  y) 
 z = x + y; 
       return z; 
} 
Original Program 

int foo (int x, int y) 
{ 
int z = 0; 
       if (x > y) 
 z = x + y; 
       return z; 
} 
      Mutant Program 

 
Figure 1. A mutant example 

 
 
In the case, there is no test data that are able to detect mutant because the mutant program is 

functionally equivalent to the original one and called equivalent mutant. A mutant is said to be equivalent if 
there is not such a test case able to differentiate between the output of the mutant and the output of the 
original program. 

In mutation testing, each test data can detect some mutants in PUT. It is unlikely that one test will 
kill all mutants, requiring that, the result of test data generation based on mutation must incorporate a 
sufficient number of tests. It is expected that this test set can detect as many mutants as possible. The quality 
of test sets is evaluated through mutation score. It is the proportion of mutants killed out of all non-equivalent 
mutants that are generated from PUT by applying mutation operators. If this proportion is equal to 1, then test 
set is adequate and capable to detect the faults in PUT highly. 

It is stated that mutation testing is an effective method to assess the quality of test data. However, 
most of studies in this field focus on reducing computational expense. There has been less work on applying 
mutation coverage in the context of test data generation. In this paper, we will analyze the test data 
generation techniques using mutation coverage to assess the quality of obtained test sets systematically. 
These methods are divided into some groups: random test date generation, constraint-based test data 
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generation, enhanced control flow graph, dynamic symbolic execution, search-based test data generation and 
the hybrid techniques. The details of these methods will be presented in next section. 
 
 
3. MUTATION-BASED TEST DATA GENERATION TECHNIQUES 

After collecting the test data generation techniques based on mutation testing, we classify them into 
six categories: random test data generation (G1), constraint-based techniques (G2), enhanced control flow 
graph (G3), dynamic symbolic execution (G4), search-based test data generation (G5), andhybrid techniques 
(G6). These categories are derived based on the characteristics of each method. G1 generates test data 
randomly within the input space. G2 comprises the techniques using constraints on test data to kill mutants. 
G3 contains on the studies describing techniques relying on code coverage, analysis of the data flow and 
control flow to generate test data. G4 includes the approaches that incorporate execution of the program 
under test data with selection of paths from its control flow graph and solving the constraints on input data to 
kill mutant. G5 consists of techniques that apply the meta-heuristic algorithms to determine the best solution 
in a search space of a given problem. The approaches in G5 called the search-based techniques and the 
process of generating test data killing mutants is guided by fitness functions. G6 is the combination of G4 
and G5 because it uses the meta-heuristic algorithms and DSE (dynamic symbolic execution) techniques to 
generate test sets. 

 
3.1. Random Test Data Generation 

Random Testing is one of the most fundamental and popular methods. It is simple in concept, easy 
to implement, and can be used on its own or as a component of many other testing methods. Random 
approaches generate test input vectors with elements randomly chosen from appropriate domains. Input 
vectors are generated until some identified criteria have been satisfied such as the maximal number of test 
cases. Random testing may be an effective means of gaining an adequate test set for simple programs. 
However, it may simply fail to generate appropriate data in any reasonable time-frame for complex software 
that has strict requirements of the data domain specification. For the vast data domain, it is difficult to 
randomly generate test data that can detect hard-to-kill mutants. For example in Figure 1, the mutant is only 
killed when x is equal to y. This is difficult to be achieved if random test generation in a vast data domain. 

Some studies have been conducted to improve the limitation of random approaches. Adaptive 
random testing (ART) was proposed by Chen et al.[8] as an enhancement to pure random testing. Adaptive 
random testing seeks to distribute test cases more evenly within the input space. It is based on the intuition 
that for non-point types of failure patterns, an even spread of test cases is more likely to detect failures using 
fewer test cases than ordinary random testing. The fundamental idea behind ART is to reward diversity 
among sampled test cases. If a test case does not detect any failure, then in presence of contiguous faulty 
regions it would be better to sample test cases that are far from it. The distance among test cases in an input 
domain D depends on the type of PUT. In the case of numerical inputs, the Euclidean distance can be used. 
Chen’s approach generates candidate inputs randomly, and at every step selects from them the one that is 
furthest away from the already used inputs. ART was initially introduced for numerical values and it 
calculates the distance between two such values using the Euclidean measure. The basic algorithm of ART is 
depicted in Figure 2. Results show that adaptive random testing does outperform ordinary random testing 
significantly (by up to as much as 50%) for the set of programs under study. However, the restrictions of this 
method are that it can generate only numeral test data, requires more memory and computation than purely 
random method. 

 
 

Z = {} 
Add random test case to Z and execute it 
repeat until stopping criterion is satisfied 
 sample set W of random test cases 
 for eachw of these |W| test cases 
  w.minD = min(dist(w,z∈Z)) 
 execute and add to Z the w with maximum minD 

 
Figure 2. Algorithm of ART 
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3.2. Constraint Based Test Data Generation 
Constraint Based Testing (CBT) was the first test case generation method used for mutation testing. 

It was proposed by DeMillo and Offutt [9], based on the idea of control flow analysis, symbolic execution, 
constraint on mutants and program execution in order to generate test data automatically. According to the 
authors, a mutant should be killed if it satisfies three conditions known as reachability, necessity and 
sufficiency. The reachability condition expresses that the mutated statement must be reached by test data. If 
test suites cannot execute the mutated statement, then tests have no chance of killing the introduced mutant. 
The necessity condition requires the execution of the mutated statement to result in an error in the program’s 
state. This means that the execution outcome of the original and the mutated statements must be different. 
Otherwise, the syntactical equality of the rest of the original and mutant program versions will never create 
the different computations and will thus never result in visible output differences. The sufficiency condition 
states that the incorrect state must propagate to the last statement and create at least one different output 
between original and mutated program. The CBT method has been implemented in a tool called Godzilla in 
order to test the Fortran programs and has been integrated with the Mothra [10] mutation testing toolset. CBT 
has empirically been shown to be an effective approach; however, it has certain drawbacks with respect to the 
symbolic evaluation when solving the handling of arrays, loops, non-linear expressions and the path 
explosion problem. 

To overcome these difficulties, Offut et al. proposed Dynamic Domain Reduction (DDR) method 
which was presented in [11]. This approach still retains reachability, necessity and sufficiency conditions but 
improves how to handle these conditions. This method generates tests by basing on the reduction of the input 
spaces of the variables involved. The DDR approach takes in account the test data generation problem as a 
dynamic path based problem. It uses the program control flow graph and bases on a search heuristic method 
over the input variables domain to generate test data. When it reaches a branch point in the path, the variables 
used within that branch predicate have their domains reduced in accordance with the execution of the desired 
branch path. If there is a choice of how to reduce the domain, a search process is made from the subsequent 
path in order not to make an inappropriate selection and restrict subsequent branch outputs. Upon reaching 
the target node, the remaining values in each variable's domain represent the values that will cause execution 
of the desired path, i.e. for mutation testing where the mutated statement is the target node; the remaining 
domains represent test values that satisfy the reachability constraint. In some cases though, a domain will be 
empty indicating that the procedure failed either because the path is infeasible or it was too difficult to find 
value to execute it. Offutt et al. [11] concluded that DDR “is less likely to fail to find a test case when a test 
case exists, and that implementations can be more efficient”. Compared to the CBT approach, this procedure 
would seem more favorable. 

 
3.3. Enhanced Control Flow Graph 

This approach transforms the problem of generating test data killing mutants to a covering branches 
alternative. Thus, effective heuristics applied for branch testing can be extended to mutants too. The most 
popular methods for branch testing are those that select specific path sets to generate the sought test data. As 
with all path generation methods their major deficiency is the generation of infeasible paths, this problem is 
also inherited when employing path generation for performing mutation testing too. In [12], Papadakis and 
Malevris proposed an effective path selection strategy in order to achieve adequate coverage. The presented 
strategy targets on generating mutation adequate test sets in an effective way. This is achieved by a strategy 
that reduces the effects of infeasible paths and equivalent mutants. The authors built an enhanced graph by 
adding a special type of vertex for each mutant. Every mutant related vertex is connected with its original 
corresponding node and represents a special mutant related necessity constraint [12]. Treating each mutant as 
a branch helps focus on specific mutants and select candidate paths in order to generate data aiming at killing 
the specified mutants. Figure 3 demonstrates the construction of the enhanced control flow graph (the 
original control flow graph on the left and the enhanced one including three mutants on the right). 

The main idea of the proposed approach is to reduce the problem of fulfillment of the necessity 
conditions of mutants to that of covering branches. This is done by transforming the required necessity 
constraints into branch predicates and representing them in the program control flow graph. The innovation 
of this approach is the use of an enhanced control flow graph and its respective branch predicates in order to 
proceed with the symbolic evaluation and test data generation phase. The benefit of the approach is the 
incorporation of mutation based criteria with existing path based test data generation methods inheriting all 
their merits. The details of this method are presented in [12]. 
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Figure 3.The Enhanced Control Flow Graph [12] 
 
 

Enhanced control flow graph can be considered as a supplement to the theory of test data generation 
methods based on mutation coverage. It transforms the test data generation problem into path selection 
problem in graph. However, for a large program and there are many generated mutants, this method will face 
up to the limitation that are the vast number of nodes in the graph and the path explosion problem. These 
reduce the effectiveness of the method. These restrictions need to be further figured out to improve the 
effectiveness and efficiency of the solution. 

 
3.4. Dynamic Symbolic Execution 

Symbolic execution [13] is an advanced program analysis technique in which inputs and other 
variables assume symbolic rather than particular values and output is a mathematical expression of these 
symbols. The symbolic evaluation process of a program consists of assigning symbolic values to variables in 
order to deduce an abstract algebraic representation of the program’s computations and representation. This 
technique is based on the selection of paths from its control flow graph and the computation of symbolic 
states. The symbolic state of a path forms a mapping from input variables to symbolic values and a set of 
constraints called path conditions over those symbolic values. Path conditions represent a set of constraints 
called symbolic expressions that form the computations performed over the selected path. Solving the path 
conditions results in test data which if input to the selected path, this will be executed. If the path condition 
has no solution the path is infeasible. Despite of the capabilities of symbolic execution, there are several 
problems associated with its application: path selection and the evaluation of loops, module calls, arrays and 
constraint solving. The problem of path selection and the evaluation of loops is that it will cause path 
explosion. When the size of program increases, the size of constraint expressions obtained may become very 
large. These are the limitations of this approach and it is difficult to apply it for a large program. 

Dynamic Symbolic Execution (DSE) is a more recent innovation that overcomes many of the 
limitations of traditional symbolic execution. This method allows automatic generation of test inputs that 
achieve high code coverage. DSE executes the program under test for some given test inputs (ones generated 
randomly), and at the same time performs symbolic execution in parallel to collect symbolic constraints 
obtained from predicates in branch statements along the execution traces. During test generation, DSE is 
performed iteratively on the PUT to increase code coverage. Initially, DSE randomly chooses one test input 
from the input domain. Next, in the each iteration, after running each test input, DSE collects the path 
condition of the execution trace, and uses a search strategy to flip a branching node in the path. Flipping a 
branching node in a path constructs a new path that shares the prefix to the node with the old path, but then 
deviates and takes a different path. Whether such a flipped path is feasible is checked by building a constraint 
system. If a constraint solver can determine that the constraint system is satisfied within the available 
resources, DSE generates a new test input that will execute along the flipped path and achieve additional 
code coverage. In this way, DSE is able to generate a set of test inputs that achieve high code coverage. 
Using DSE, non-linear path constraints are simplified by the instantiation of concrete runtime values, 
harvested from program execution. 

The authors in [14] proposed the application of DSE for generating test data based on mutation 
testing. After generating mutants for the program under test, they will generate corresponding weak-mutant-
killing constraints for each mutant. For example, op1>op2 has a corresponding mutated expression 
op1op2 then condition to kill this mutant is ((op1>op2) && !(op1op2)) || (!(op1>op2) && (op1op2)). 
Next, all the generated constraints are inserted into proper positions of the original program to form a meta-
program. After transforming the original program under test into a meta-program containing all mutant-
killing constraints, the DSE engine is used to generate test inputs for the meta-program [10]. The authors 
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built the PexMutator tool in order to support for generating test data for C# programs. Their preliminary 
experimental study shows that PexMutator is able to strongly kill more than 80% of all the mutants for the 
studied subjects. However, this method faces up to the problem is to introduce as many constraints as 
mutants of the program under test into the corresponding meta-program, making it expensive for the DSE 
engine to generate test inputs for a large number of branches. One of the ways to overcome this problem is 
investigate techniques that generate constraints that enable to weakly kill multiple mutants, thus reducing the 
number of total generated constraints while keeping the same effectiveness. 

Papadakis et al., [15] used mutant schemata in conjunction with DSE to generate test data based on 
mutation analysis to be satisfied three conditions named reachability, necessity and sufficiency. An 
automated framework for testing Java programs according to mutation was also proposed by authors. First of 
all, the schematic meta-program versions of the program under test are generated. Next, the mutant schemata 
generation component produces a static structure of the call and control flow graphs and a list of the 
introduced mutants with their respective program statements. These two artifacts are then passed to the test 
generation module. This module iteratively selects a mutant as a target, performs DSE on the schematic 
meta-program and produces some test cases. These test cases are then passed to the test executor which 
determines their execution path, the mutants that the test cases can infect and the mutants that are killed. 
After that the process continues with the next iteration. Finally, after reaching a predefined number of 
iterations or time limit the process ends and reports the produced test cases and the achieved mutation score. 
The proposed approach was experimented on 5 programs with up to 500 lines of code and the obtained 
average mutation score is 63%. This approach faces up to some limitations when applying for the large PUT. 
Because many mutants are generated, the computational cost is expensive when specifying the feasible path 
in PUT as well as solving the constraint conditions. An improved method to overcome these restrictions is to 
save the constraints checked to avoid solving the same constraints many times. In order to solve the problem 
of path explosion and equivalent mutants, it is possible to use the appropriate fitness evaluations in 
conjunction with the effective heuristics. 

 
3.5. Search-Based Test Data Generation 

Static approaches generating mutation-based test data rely on solving the entire set of constraints, 
whereas dynamic test data generation methods detect individual faults based only on actual executions of 
program or design. Search based test data generation is one of the dynamic approaches. It models the testing 
task as a search problem that is guided by a fitness function. Then, problem is solved by applying meta-
heuristic techniques like genetic algorithms, simulated annealing, clonal selection algorithm or Tabu search 
to optimize this function. However, whatever may be the search techniques employed fitness function or cost 
function plays a major role to guide and seek input test data that achieve the highest mutation score. 

Bottaci [16] was the first to suggest using search-based software engineering to kill mutants. Bottaci 
proposed a fitness function for genetic algorithms based on the constraints defined by DeMillo and Offutt in 
order to generate mutation-based test data. However, this proposed approach remained unimplemented and 
unevaluated until the subsequent for work of Ayari et al., [17]. They used Bottaci’s proposal to define and 
implement a fitness function that measures how close a test case is to kill a mutant. They used this fitness in 
conjunction with the ant colony optimization (ACO) algorithm for automatic test data generation for Java 
programs. Two Java programs were used to assess the effectiveness of the ant colony algorithm. The 
obtained results indicate that ACO approach performed significantly better than genetic algorithm and Hill 
Climbing in terms of attained mutation score as well as computational cost. However, the fitness function 
only implements the reachability component. The necessity and sufficiency components are still not solved. 

Another meta-heuristic algorithm is usually used to support for test data generation that is genetic 
algorithm (GA). This algorithm is probabilistic search algorithm inspired from biology. The GA is an 
iterative process to find the best solution in the population of solutions through many generations. Algorithm 
is started with a set of solutions (test data) is randomly generated called population. Then, the individuals in 
the population are evaluated based on their fitness function. Better individuals are having more chances to be 
selected as parents in order to reproduce better offspring by using crossover and mutation mechanisms. The 
algorithm continues iterating until the pre-defined stopping condition is met such as the maximal number of 
generations, all mutants are killed or pre-defined mutation score is reached. After a number of generations, 
the algorithm will return the best individual of population which kills the most mutants. Baudry et al., [18] 
applied the GA to improve the randomly generated test sets according to mutation for C# programs. They 
used a population of 12 individuals consisting of 4 tests each. Using a 2% mutation rate over 200 iterations, 
the mutation score reaches a peak of 80%, with an average of 65-70%. In [19], we proposed to apply the GA 
in order to generate test data for Simulink models. We also conducted the experiments and evaluated the 
results on 5Simulink models and obtained the average mutation score of 85.7% within 20 genetic generations. 
Both studies, each individual is a set of test data and the fitness calculations are performed by basing on the 
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achieved mutation score. The limitations of this representation are to use much memory and increase the 
execution time. Moreover, the fitness function does not guide the search method by quantitatively measuring 
the closeness of killing specific mutants in the each genetic generation. Fraser et al., [20] proposed an 
effective fitness function for the GA based on branch distance and approach level. The approach level 
describes how far a test case is from the target in the control flow graph when it has deviated from the 
anticipated course. This is usually measured as the number of unsatisfied control dependencies between the 
point of deviation and the target, and the value of approach level will be 0 if all control dependent branches 
are reached [20]. The branch distance estimates how far the branch at which execution diverged from 
reaching the mutation is from evaluating to the necessary outcome. The authors applied the proposed 
approach to a set of 10 open source Java libraries and obtained the average mutation score of 72%. 

In [18], Baudry also proposed a new algorithm to overcome the limitations of the GA in order to 
enhance the quality of test data. That was Bacteriological algorithm (BA). In this algorithm, an individual is 
an atomic unit - it cannot be divided. BA maintains a memory set consisting of the best individual(s) from 
each generation. As an atomic unit, individuals cannot be mated and so variation stems purely from the 
reproduction and mutation process. A memory set is also maintained, where new individuals are added if 
their fitness exceeds some threshold. Individual fitness is based on a narrowing search space, with 
calculations based on what is left to optimize. For example, applied to mutation testing, fitness is calculated 
by basing on how many mutants a test kills that the memory set does not. If this fitness exceeds a threshold, 
that individual is reproduced and placed into the memory. Results reported that using a BA generates a 
memory set with a mutation score of 96% in just 30 generations. An average mutation score of 96% was 
obtained by executing only 46375 mutants, compared with the GA attaining an average mutation score of 
85% in 480000 mutant executions. For BA, the initial population consisted of 30 tests and a memory 
threshold of 20% (i.e. a test had to kill over 20% of remaining mutants to be added to the memory set). 
Comparisons were also made with a GA approach; however it is difficult to ascertain the fairness of the 
experiments. For example, the GA consisted of 12 members of 4 tests each, equating to 48 tests, where as the 
BA used between 3 and 10 tests for its initial main population. 

Another evolutionary approach that is very promising to support automatic test data generation is 
clonal selection algorithm (CSA) – a subfield in artificial immune system. When applying this method in the 
context of mutation testing, an antigen is an introduced mutant. An antibody is a test data which is generated 
to kill mutants. The affinity of an antibody (test data) is measured by mutation score. Antibody evolution 
occurs through the process of clonal selection, guided by the affinity values. The high affinity antibodies 
generate more clones than low affinity ones, but mutate less. This process aims at refining antibodies to kill 
as many mutants as possible. The best antibodies will be added to a memory set for saving and return to 
testers when testing process finishes. May [21]adopted this method to evolve test data for Fortran programs 
basing on mutation testing. In [22], we also proposed to apply CSA with some modifications to generate test 
data for Simulink models. 

Tao Xie et al., [23] defined a cost function from fault simulation traces to real values in HDL 
programs. This cost function for directing search heuristics has been defined on the test input space. By 
mapping a pair of fault simulation traces onto the Control and Data Flow Graph (CDFG) structure, the 
authors were able to analyze quantitatively how far a fault effect has been propagated through both the 
control and data flows. The macro propagation distance and the local propagation cost together form a 
complete solution to the necessity and sufficiency sub-problems of fault detection. One major limitation of 
the work is to still lack an automation tool for the construction of CDFG as well as test data generation. 

Another work was proposed by Zhan and Clark [24] in which they generated test data in the context 
of mutation testing for Matlab/Simulink models by using simulated annealing and random testing. The 
method randomly generates a large set of test-data, detects the mutant-killing ability, and then minimizes the 
test set whilst retaining its overall mutant-killing ability. For mutants that cannot be killed by the random test 
set, the method provides an effective means of automatically generating individual test data for fulfilling 
individual mutant-killing aims. In this way, a targeted test data generation is utilized to complement the 
random test generation in order to achieve mutation adequacy. 
 
3.6. Hybrid Techniques 

As presented above, meta-heuristic search and dynamic symbolic execution technique have emerged 
as two successful approaches to automatically generate test data that achieve high mutation coverage. Both 
approaches have their advantages, but they also have specific drawback. Search-based testing scales well and 
can handle any code and test criterion but it gets stuck in local optima and degrades when the search 
landscape offers no guidance. DSE based testing exploits the efficiency of modern constraint solvers which 
are not dependent on search heuristics, but there are limits to both scalability and the types of constraints that 
can be handled. In [25], Harman et al. introduced a hybrid DSE and search-based software testing approach 
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to generate strongly adequate test data to kill first and higher order mutants. The authors implemented their 
approach in a tool called SHOM. The proposed approach was evaluated on 17 subject programs, including 7 
real world programs (four from two different closed source industrial systems and three for which source 
code is publicly available). They reported the results of an empirical evaluation of SHOM’s efficiency and 
effectiveness for strong first order mutation adequacy. The results show that SHOM can kill up to 38% of the 
first order mutants left unkilled using reachability and infection, which in turn kills up to 36% of the mutants 
left unkilled using reachability alone. They also reported the results of a further empirical study of SHOM’s 
efficiency and effectiveness for strong second order mutation adequacy. The results showed that SHOM can 
kill up to 48% of the second order mutants left unkilled using reachability and infection, which in turn kills 
up to 41% of the mutants left unkilled using reachability alone. 

Thispresented several techniques used to generate test data based on mutation testing. All 
approaches are promising to formulate high quality test suites. Some well-known techniques and related 
papersare briefly presented in Table 1. 

 
 

Table 1. The typical test data generation approaches 

Author [Ref] Year Technique Subjects Studied 
Subject 

Language 
Average 

mutation score 

DeMillo and Offut [9] 1991 
Constraint-based test data 
generation 

5 small programs Fortran 98% 

Offut et al. [11] 1999 Dynamic Domain Reduction 12 small programs Fortran Not given 

Chen et al. [8] 2004 Adaptive Random Testing 12 small programs C++ Not given 

Baudry et al. [18] 2005 
Search-based test data generation 
using genetic algorithm 

An example in Eiffel Library C# 85% 

Baudry et al. [18] 2005 
Search-based test data generation 
using Bacteriological algorithm 

An example in Eiffel Library C# 96% 

Ayari et al. [17] 2007 
Search-based test data generation 
using ant colony algorithm 

2 small programs Java 88% 

Papadakis et al. [12] 2009 Enhanced Control Flow Graph 8 small programs Java 90.2% 

Zhang et al. [14] 2010 Dynamic Symbolic Execution 5 small programs C# 90% 

Papadakis et al. [15] 2010 Dynamic Symbolic Execution 
5 tiny examples + plus 3 
small Siemens suite examples 

C 63% 

Frazer et al. [20] 2010 
Search-based test data generation 
using genetic algorithm 

2 non-trivial examples: 
Commons Math &JodaTime 

Java 72% 

Harman et al. [25] 2011 
Combine Dynamic Symbolic 
Execution and Search-based 
testing 

7 real world programs and 10 
small programs 

C 71% 

Hanh et al. [19] 2014 
Search-based test data generation 
using genetic algorithm 

5 Simulink models Simulink 85.7% 

Hanh et al. [22] 2014 
Search-based test data generation 
using the clonal selection 
algorithm 

2 Simulink models Simulink 88.1% 

 
 
4. FUTURE TRENDS 

It would not be possible to conclude this survey without spending a little time discussing the 
possible future trends of test data generation based on mutation analysis. It can see that there are four 
important directions for research: the scalability of the current techniques for large-scale software project, the 
study for high quality higher order mutants to reduce the size of test set, elimination of equivalent mutants 
before generating test data, and automatic adjustment of configuration parameters for the meta-heuristic 
algorithms in search-based test data generation.Solving these concerns will improve significantly the 
effectiveness of techniques and the quality of test set. 

The approaches presented in this paper were experimented on small programs. It is expected to 
conduct studies about the scalability of the current techniques for large-scale industry software. Recent work 
has tended to focus on more elaborate forms of mutation than on the relatively simply faults which have been 
previously considered. There is an interest in the semantic effects of mutation, rather than the syntactic 
achievement of a mutation [26]. It is desired to generate higher order mutation and resemble real faults. In the 
future, therefore, studies will focus on generating test data to kill higher order mutation as well as reduce the 
size of test suites. The more mutants killed by a test set, the better the measured adequacy of the test set. This 
will enhance the quality of test data and decrease time spent on software testing process. 
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One of the most challenges in test data generation using mutation testing is the detection of 
equivalent mutants. It wastes time to generate test data but we never find out test that is able to kill these 
mutants. In the future, mutation testing methods should seek to avoid initial creation or elimination of 
equivalent mutants before generating tests. This work will reduce the time wasted on generating test suites 
and improve the mutation coverage of test data. 

It can also be seen that search-based test data generation techniques depend on setting parameters. 
These parameters are drawn from experiments and fixed in the searching process. They affect to the 
effectiveness of meta-heuristic algorithms and obtained test suites. It is expected that, in the future, there will 
be more work concentrating on self-tuningof parameters to seek high quality test data. The information from 
previous generations can be used to choose the appropriate parameters for the current generation 

 
 

5. CONCLUSION 
This paper presents a comprehensive survey of the most prominent techniques in automatic test data 

generation based on mutation. These techniques include random test data generation, constraint-based test 
data generation, enhanced control flow graph, dynamic symbolic execution, search-based techniques and the 
hybrid approaches. 

The results of the survey indicate that there are quite a lot researches in the field of generating test 
data based on mutation testing, and most of them are positive. In the work that we deployed about the use of 
meta-heuristic algorithms to search for test data that is able to kill many mutants, the initial results are 
promising. 

For the test data generation techniques based on constraint and dynamic symbolic execution, the 
obtained tests can kill mutants with a high proportion. However, they can encounter the path explosion 
problem when handling large programs and designs. For search-based methods, test data are optimized 
through generations rely on evaluating the cost function. In the study of the other authors as well as our work, 
the cost function has not guided for test data generation towards the higher mutation score yet. Thus, in the 
future, the cost function may be improved by guiding the process of test data generation that orientates the 
specific mutants in each genetic generation. 
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