
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 5, October 2015, pp. 992~1002
ISSN: 2088-8708 992

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Networking Heterogeneous Microcontroller based Systems
through Universal Serial Bus

Sastry Kodanda Rama Jammalamadaka*, Valluru Sai Kumar Reddy*, Smt J Sasi Bhanu**

*Department of Electronics and Computer Science Engineering, KL University
** Department of computer Science and Engineering, KL University

Article Info ABSTRACT

Article history:

Received May 13, 2015
Revised Jul 1, 2015
Accepted Jul 20, 2015

 Networking heterogeneous embedded systems is a challenge. Every
distributed embedded systems requires that the network is designed
specifically considering the heterogeneity that exits among different
Microcontroller based systems that are used in developing a distributed
embedded system. Communication architecture, which considers the
addressing of the individual systems, arbitration, synchronisation, error
detection and control etc. needs to be designed considering a specific
application. The issue of configuring the slaves has to be addressed. It is also
important that the messages, flow of the messages across the individual ES
systems must be designed. Every distributed embedded system is different
and needs to be dealt with separately.
This paper presents an approach that addresses various issues related to
networking distributed embedded systems through use of universal serial bus
communication protocol (USB). The approach has been applied to design a
distributed embedded that monitors and controls temperatures within a
Nuclear reactor system.

Keyword:

Distributed Embedded Systems
Heterogeneous ES systems
Networking ES Systems
Serial Communication
USB

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Sastry KR Jammalamadaka,
Department of Electronics and Computer Engineering,
KL University,
Vaddeswaram, Guntur District, Andhra Pradesh, INDIA 522502.
Email: drsastry@kluniversity.in

1. INTRODUCTION

1.1 Background
Embedded systems are being used extensively for monitoring and controlling various physical

parameters. Embedded systems are reactive that they respond to changes taking place in the external
environment. Almost all electronic gadgets (which include digital cameras, washing machines…etc.) being
used today are fitted with an embedded system. Embedded systems are also used these days as computing
nodes connected on to internet, forming into internet of things.

Many specialised applications such as automobile systems require interconnecting individual
embedded systemsfor controlling brakes, doors, mirrors, rare and front object indicators, engine temperature,
wheel speed, tyre pressure, DVD control…etc. and to provide information into a display unit which is fitted
into a dash board. The individual embedded systems are generally heterogeneous in nature as they are built
around different technologies. Sometimes the networking has to be achieved through connecting the
individual embedded systems that are placed in different layers, each layer catering for a specific
communication speed.

Networking of individual embedded systems is generally achieved through Serial bus based
communication around I2C, CAN, USB, RS485 etc., communication protocols. Each type of networking

 ISSN: 2088-8708

IJECE Vol. 5, No. 5, October 2015 : 992 – 1002

993

leads to different communication characteristics such as baud rate, length of communication, bus termination
etc.

Networking of heterogeneous embedded systems using any of the serial communication protocol
requires hardware conversion and the kind of conversion required will be based on the type of technology
used in building the individual embedded systems. Every networked embedded system, thus must be
individually designed and as such there is nothing like general approach recommended for networking a set
of heterogeneous embedded systems. Many issues such as master and salve addressing, designing the
messages that flow across, the sequence of flow of messages have to be considered for building distributed
embedded systems. These issues differ in many ways from one distributed embedded system to other.A
system of working / Approach is needed that help developing a distributed embedded system for a specific
application considering the issues which include heterogeneity, message flow, node addressing, and message
design.

1.2 Problem Definition

A distributed embedded system involves use of individual microcontroller based systems. Each
microcontroller system may have built-in interfaces using which communication with other microcontrollers
can be achieved. Establishing communication among various microcontroller based systems is essential to
implement a distributed embedded application.In a distributed embedded application both the hardware and
software that comprise entire application is distributed. Communication is necessary among the
microcontroller based systems for exchanging of process information.

Networking of different microcontroller based systems requires addressing various Hardware and
software related heterogeneous issues which includes interfaces, protocols, implementation of protocols etc.
Networking of embedded systems can be achieved in many ways using protocols such as RS232C, RS485,
RS422, SPI, fire wire, USB, CAN, I2C, ETHERNET, PCI, and ESA etc. Among all, bus based serial
communication protocols are used for establishing a network connecting all the individual microcontroller
systems. USB is such a protocol which is frequently used by the industry for effecting communication among
individual microcontroller based systems.

One of the major problems in implementing USB based system is due to lack of native support
within some of the microcontroller systems. The USB implementations within some of the microcontroller
systems defer a lot, as USB exists in several versions and the existence of several implementation variations.
This is leading to establishing interfacing using many of the conversion devices which leads to frequent
protocol conversion. Speed of communication is normally affected when several versions of the same
protocol is used which also should be addressed.

Every distributed embedded system requires different communication system architectures and
every communication system must be customised for implementation of specific distributed embedded
Application. No generic communication system as such will meet the purposes of all types of distributed
systems.Thus there is a requirement of finding approaches, mechanisms and methods using which USB based
communication is used within the network of heterogeneous embedded systems and also to design
application specific communication system architecture and the designing of the same considering various
aspects of communication which include addressing, configuration, transmission, reception, arbitration,
synchronisation, error detection and control etc.

The messages must flow in a sequence for effecting a distributed application. The USB based
system does not support prioritisation of the slaves to respond even though all the slaves are allotted with an
address. There must be a way of prioritising the requests and responses as per the application requirements
initiated from the master and responded by slaves. The data packets must also be designed considering the
way the data is exchanged among the masters and the salves.

1.3 Related Work

Many contributions have been presented related tothe problem area; most of them concentrated
around implementation of USB based serial communication method to be used as a standard which is
generally achieved through converting from one interface to the other. Some work has been presented that
explain the way the USB protocol can be converted into other protocols. Most of the contributions are in the
area of point-to-point communication using USB.

Ana Luiza de Almeida Pereira Zuquimet. al., [1] used a converter to transform RS232C output/input
to USB equivalent. The design of the converter is presented based on Engetraon UPS Serial communication
requirements and they have shown the implementation on Cypress microcontroller based system.

Every home, these days is being automated by using various electronic gadgets forming into a
digital network. Even the mobile phones are being used for automating and communicating purposes. Homes
are being connected both through wired and wireless broadband. Many standards have been developed for

IJECE ISSN: 2088-8708

Networking Heterogeneous Microcontroller based Systems through … (Sastry KR Jammalamadaka)

994

affecting digitization and communication but not many applied for real life applications. Standard protocols
are to be developed that suits completely the issue of home digitization.Yong-Seok Kim et. al., [2] have
developed home network using USB as a standard. It is possible to expand the home network when the same
is developed through USB protocol.While the devices installed in the home are interfaced through USB, the
mobile communication is achieved through CDMA and the local communication is achieved through Wi-Fi.
They primarily focussed in protocol conversion from USB to CDMA and vice versa.

Universal Serial Bus (USB) is being used as default industry standard for processing input data that
get generated continuously. The use of USB and USB HUB causes certain amount of latencies making it
unsuitable for accessing the data which is generated at rapid speeds. It has been proved that USB can be used
when the real time requirements are soft. USB protocol can be used in respect of the devices that can tolerate
the delay in the order of milliseconds [3]. This paper has limited its discussion with reference to the latencies
with which one can work using USB.

Many communication protocols are being used for affecting communication between the devices,
systems and control equipment. Standard protocols being used include such as USB, RS232C, CAN, and
ETHERNET. In most of the advanced systems, the protocols are being used inter- mixingly for the
development of integrated circuits. However it has become evident that a real-time operating system and
advanced microcontroller based systems are to be used when such many protocols are to be used within the
same board.

Taghi Mohamadi et. al., [4] have presented that implementing, controlling and data acquisition
functions through embedded systems will help in achieving overall reliability and durability. There is a need
to determine hardware architecture and real time multi-tasking processes when multiple protocols are to be
used. Such a system can be conveniently employed when network interfaces with different protocol layers
are to be used. The architecture can also be employed for constructing a smart gateway or a router. However
an embedded board which is versatile having all the stated interfaces is required for establishing such kind of
hybrid network which uses different kinds of protocols. In this case a middleware is required using which
communication with all standard protocols can be carried. Here again protocol conversion based on the real-
time operating system has been only discussed.

Different sensors are normally connected to a microcontroller based system either through using
I2C/SPI direct interface or using analog signals converted to digital signals using an A to D converter.
Microcontroller based systems can be connected to both a local host or to a remote host through an internet
connection established through USB ports [5]. USB’s are thus being used as Hubs, connecting devices on one
side and hosts on the other leading to establishment of both local area and wide area networks. A networking
architecture in this manner can be implemented, though Bus based networking is not used.A microcontroller
based system can be designed for communicating with many of the devices by implementing different
protocols within the same board. However this kind of topology is limited considering the extendibility
requirements of distributed embedded systems; only fixed number of embedded boards can be connected in
this way. The networking in this case is elaborated considering all those devices that have been supported
with USB interface.

Connectivity between two different devices that have two different protocol interfaces cannot be
achieved without the support of a USB-Wi-Fi bridge. Communication is affected through converting one
protocol to other. Converters of this kind can be used for developing hybrid networks [6]. TusharSawant et.
al., [7] have presented a microcontroller based system that has built-in USB ports and the same is interfaced
with touch screen which has buttons through which commands can be fed for effecting data transfer between
the mass storage devices using USB ports supported on the same board. This, in a way is called as USB to
USB bridge device.

A. Ying Huang et. al., [8] have designed a microcontroller based USB Host system which can be
used for interfacing different kinds of USB based devices. They have used an 8-bit MCUAT89C55 and an
interface chip SL811HS for achieving the USB implementation within a single embedded system. The MCU
is used to make it behave like a USB host. The driver/controller function is implemented within the MCU.
Communication between a USB device and an USB implemented MCU is undertaken as per the standard of
USB and the data flow is used to direct the transfer across the mass storage devices as per the format and
structure. This a is a kind of point to point communication system than just simply visualising as a network of
embedded systems.

Universal serial bus storage devices are used for faster I//O handling and generally treated as
peripheral devices which needs a host for communicating with it. Communication between two USB devices
thus needs to be achieved through a host. To avoid the use of PC for effecting communication between two
USB devices there is a need to implement a MCU based USB communication system. Such kind of a host
can be used as a network hub. The protocol needed to sense existence of USB device is implemented by the
MCU based host. Harpreetet al., [9] have presented a microcontroller based system to transfer data between

 ISSN: 2088-8708

IJECE Vol. 5, No. 5, October 2015 : 992 – 1002

995

the two USB devices. In this system VDIP2 module is used along with the microcontroller. VDIP2 consists
of a chip called VNC1L which has built in USB ports, LCD, and a keypad. Commands are issued through a
keyboard effecting data transfer between the mass storage devices that are connected to two of the USB ports
of VDIP2. Users can see the data flowing across both the USB devices. As such, modifications are required
to this proposition so that more USB devices are supported and communication between any two devices is
achieved. This approach is more or like implementing a USB based hub.

Yassine Bouterraet. al., [10] have presented a distributed architecture for implementing an industrial
robot using multiple MCU’s which are connected through a I2C bus and controlling initiated through a PC
connected to one of the MCU’s through a USB interface. Dave [11] has presented implementation details of
USB based hub for conducting either high speed/low speed transactions. Dogan Ibrahim [12] has presented
complete description of the networking of distributed embedded systems through USB protocols. The
architecture and design of a USB hub and the USB protocol descriptions/specifications have been extensively
presented.

In literature, the issue of establishing an USB based network connecting a heterogeneous
microcontroller based systems has not been quite addressed. The communication architecture as such has to
be designed separately considering a specific distributed embedded application. The design of specific
communication systems involves allocation of specific addresses to the slaves such that communication
takes place as per the priorities required by the distributed embedded application.The configuration of the
slaves is also very much dependent on a specific distributed system. There is a need to design special
descriptors using which the slaves are configured as per the requirements of the distributed system.

1.4 Solution

Thus, this paper addressed the design of USB based network for connecting heterogeneous
Microcontroller based system, design of specific communication system as required by the distributed
embedded application, address allocation to the salves and configuring the slaves through descriptors for
making them adaptable for the implementation of distributed embedded application. The designing of the
messages and controlling the flow of messages across the distributed Microcontroller based system has been
presented considering a distributed embedded system that monitors and controls temperatures within a
Nuclear reactor system.

2. METHODS

2.1 Specification Description of Distributed Embedded Application

Monitoring the temperatures within the nuclear reactor tubes is one of the most important issues
when it comes to uranium enrichment. Sensors are mounted on to the nuclear reactor tubes which are
distantly situated. Many temperatures at various points within each of the Nuclear reactor tubes must be
sensed and it is also necessary to maintain proper gradients across various points at which the temperatures
are measured. When temperatures raises above some pre-defined levels, coolants have to be injected into the
tubes to bring the temperature down. Pumps are used for injecting the coolants into the tubes. The
temperature sensing and implementing the actuating mechanisms that controls the process of pumping is
achieved through various embedded systems. The operators must be alerted when the temperature gradients
goes beyond uncontrollable levels through asserting a buzzer and lighting a pattern of LEDs as the case may
be.

A historical database of temperatures sensed, pumping levels implemented, temperaturegradients,
status of triggering buzzer etc., is created at a PC(HOST) for providing the historical evidences. Each part of
sensing and actuating requires a kind of response time and therefore needs to be sensed, monitored and
controlled individually through a separate embedded system. There is a need for coordinating the functions
between the individual embedded systems for achieving the sensing and actuating in real time. This leads to
the need for interconnecting the individual embedded systems that help in establishing the communication
between the embedded systems which are individually responsible for either sensing, actuating or monitoring
the process taking place within the Nuclear reactor system.

Designing, development and implementing the Networking of embedded systems becomes one of
the most crucial issues when it comes to implement the distributed embedded systems. One of the major issue
that must be addressed is heterogeneity that exists among different types of Microcontroller based systems
which are used for developing and implementing a distributed embedded system.These requirements leads to
implementation of distributed embedded system having several microcontroller based systems, each
designated to monitor and control either the sensing or actuating mechanisms with the need for the
centralised coordination between the distributed embedded systems. Figure 1 is the block diagram that shows

IJECE ISSN: 2088-8708

Networking Heterogeneous Microcontroller based Systems through … (Sastry KR Jammalamadaka)

996

individual heterogeneous embedded systems meant for either sensing or actuating with built-in interfaces
along with an individual embedded system that provides centralised coordination.

Figure 1. Top view of a Distributed embedded system

Some of the major requirements that must be met by the distributed embedded applications are cited in the
Table 1

Table 1. Requirement specification of a distributed embedded application
Req.
Num.

Requirement description

1. Read Temp-1 and write to LCD

2. EffectUSB based communication between the 89C51 (System-1) and the Central Microcontroller(System-5)

3. Read-Temp-1 and send to Central Micro Controller

4.
Read Temp-1 and measure throughput

Temperature-1 must be sensed at least 10 times per milli second

5.

Effect USB based communication between the PIC18F4550 (System-3) and the Central Microcontroller(System-5)

If Temp-1 > Reference Temp-1 then Pump-1 must be on

If Temp-1 < Reference Temp-1 then Pump-1 must be off

Compare Temp-1 > temp-2 and if true assert buzzer on

6.

Read Temp-1 and make buzzer off if < Temp-2

If Temp-1 > temp-2 then Buzzer is on

Response time of Temp-1 must be 10µ Seconds

If Temp-1 > Reference Temp-1 then Pump-1 must be on

If Temp-1 > Reference Temp-1 then Pump-1 must be off

If Temp-1 > Reference Temp-1 then Buzzer is on

7.
Response between the Reading the Temp-1 and stopping the Buzzer must 10µ Seconds

If Temp-1 > Reference Temp-1 then buzzer off

8. Read Temp-2 and write to LCD

9. EffectUSB based communication between the AT89S52 (System-2) and the Central Micro Controller (System-5)

10. Read-Temp-2 and send to Central Microcontroller

11.
Read Temp-2 and measure throughput

Effect USB based communication between the ATmega328 (System-4) and the Central Microcontroller (System-5)

12.
Read Temp-2 and make pump-2 on if Temp-2 > Reference Temp-2

If Temp-2 > Reference Temp-2 Pump-2 on

13.
Read Temp-2 and make pump-2 off if Temp-2 < Reference Temp-2

If Temp-2 < Reference Temp-2 Pump-2 off

 ISSN: 2088-8708

IJECE Vol. 5, No. 5, October 2015 : 992 – 1002

997

Req.
Num.

Requirement description

14.
Read Temp-2 and make buzzer on if > Temp-1

If Temp-2 > temp-1 Buzzer On

15.
Read Temp-2 and make buzzer off if < Temp-1

If Temp-2 > Temp-1 Buzzer On

16.
Response between the Reading the Temp-2 and starting the pump-1 must be 10µ Secs

If Temp-2 > Reference Temp-2 Pump-2 On

17.
Response between the Reading the Temp-2 and stopping the pump-2 must be 10µ Secs

If Temp-2 > Reference Temp-2 Pump-2 Off

18. The response between the Reading the Temp-2 and starting the Buzzer must be 10µ Secs

19. If Temp-2 > Reference Temp-2 Buzzer on

20.
The response between the Reading the Temp-1 and stopping the Buzzer must be 10µ Secs

If Temp-2 > Reference Temp-2 Buzzer off

2.1. Designing USB Based Networking for Interconnecting Heterogeneous Individual Embedded

Systems
USB based networking is one of the methods that exists today for achieving interconnection among

different embedded systems. USB as such is being used universally and has become industry standard for
effecting communication between the Computing stations and peripheral devices and now even being used
for establishing the communication between many embedded systems.Many of the Microcontroller based
systems have no native support for USB while some have. Most of the Microcontroller based system differs
in many ways (word boundary, endian, byte addressing, parity, word length, number of registers etc.).
Networking such heterogeneous embedded systems through a challenge and many innovative approaches are
required for establishing the networking of the same.

USB helps in establishing a network interconnecting many embedded systems. Every distributed
embedded system is different and a dedicated network has to be designed and developed. The ES network
design must address application specific requirements. The application specific requirements related to the
Nuclear reactor application are shown in the Table 1. In the network, a specific embedded system must
behave like a central microcontroller system which is typically situated at a remote location. As per the
description of the functional requirements, the central microcontroller based system shallhave to act like a
master and the rest as slaves. The communication between the master and the slave requires a speed of 40
Kbps which allows the signals to be driven to a distance of more than 1KM which is a sufficient requirement
considering the application in view. If bus length has to be increased biased-split termination method has to
be followed while establishing the network.The higher level network showing the connectivity between the
distributed embedded systems using USB as a backbone is shown in Figure 2. The USB based network
contains a single master and 4 slaves. Conversion mechanisms are to be considered when the microcontroller
based systems which are used as a part of network are heterogeneous due to the reason that they do not have
native USB interface.

As per the functional requirements of an application, LPC2148 a 32 Bit Microcontrollers used as a
master device for achieving communication between the slave devices and the master.It consists of native
USB support. The master device must also be designed to alert local user through triggering a Buzzer about
the variations taking place with the temperature gradients. The master system must also be designed for
interfacing with a PC for communicating with it for obtaining the reference temperatures and transmitting the
process data to be stored in a database.

4 slave microcontroller based devices which include 89C51, AT89S52, PIC18F4550 and
ATmega328 have been considered for implementing various functions that are projected as requirements
which include sensing temperature-1, sensing temperature-2, starting and stopping pump-1, starting and
stopping pump-2. In those slave systems 89C51 and AT89S52 don’t have the USB support. For
interconnecting these systems, conversion mechanisms are required. 89C51 and AT89S52have been designed
with inbuilt RS232C communication interfaces, A device FT232R has been used for converting RS232C
signals to USB and Vice Versa. The devices implements buffering techniques for converting a 19.2Kbps
speed which is the maximum speed achievable through a RS232C serial communication system into to
1.5Mbps speed which is a low speed support on the USB side. This conversion is good enough as the amount
of data to be transmitted from the salve side is not more that 18K bytes considering that the throughput for
sensing and transmission is not more than 9K temperatures/second which is more than sufficient for the
application to be implemented. The designing of the USB network considering the interfacing issues is
shown in the Figure 2.

IJECE ISSN: 2088-8708

Networking Heterogeneous Microcontroller based Systems through … (Sastry KR Jammalamadaka)

998

Figure 2. USB based Networking for Nuclear reactor system

2.3 Designing Communication System

The networking diagram shown in the Figure 2 shows the interfacing of the various heterogeneous
microcontrollers based systems which are interconnected through a USB based protocol system. However
communication software resident in different microcontroller based system is required for achieving
application specific messaging requirements using the network designed for the purpose. The communication
has to be initiated by the master by using RTR (Remote transmission request) for want of Temperature-1 and
Temperature-2 to be transmitted by 89c51 and AT89s52 in that sequence. The throughput, sequencing and
timing of receipt of the temperatures are designed and developed into master device. The applications on
89c51 and AT89s52 will have software components to receive the master requests and transmit the data to
the master device. The communication components implements RS232C serial communication system for
transmitting and receiving the temperature data.

The master device at the start-up receives the reference temperatures from PC which is connected to
the master through RS232C serial communication system. The sensed temperatures are compared with the
reference temperatures and in the event that the sensed temperatures are more than the reference temperature
a message is sent to the Microcontroller based systems that operates the pumps to be on or off. On the master
side, two individual software components for each of the pump controller system shall have to be in place for
transmission of the commands and reception of acknowledgement that the intended pump operation has been
achieved successfully or otherwise. The communication in this case is achieved through use of USB
interface. The software components that are designed for effecting the communication between the master
and the pump control slave devices is achieved through implementation of the USB protocol.The master also
is provided with a component that computes the temperature gradient and asserts a buzzer or otherwise if the
temperature gradient is beyond the prescribed limits. This function as such requires no communication as the
entire functioning is implemented within the master device.

Two communication components that can communicate using USB with the master are provided
within the applications resident on PIC18F4550 and ATmega328 that controls the running of the pumps for
regulating the flow of coolants into the reactor tubes. The software architecture that depicts the application
specific communication is shown in the Figure 3.

 ISSN: 2088-8708

IJECE Vol. 5, No. 5, October 2015 : 992 – 1002

999

Figure 3. System Architecture for effecting communication among distributed embedded systems

2.4 ANovel Address Allocation Algorithm

In USB based communication, one of the connected devices will be the master and the others as
slaves. Every communication is initiated from the master. Every slave is assigned with an address by the
master at enumeration stage at the time when any device is interfaced with the bus.When a device is plugged
into a USB bus, it becomes known to the host through a process called Enumeration. After the process of
enumeration, the host sends a reset signal to the device through address0 for placing the device in a known
state. The device will send its details to the host through address0. The host assigns a unique address to the
device and sends a reset address request to the device. After the request is completed, the device assumes the
new address.

In the case of USB communication only one slave device will respond when requested by the
master. The response from the salve could be an acknowledgment followed by the actual data requested by
the master through a data packet which contains the details of the data the master is expecting. The addresses
allotted to the devices by the master could be random and the address as such does not dictate the priority of
the salves to respond. However the master should have a mechanism using which it can prioritise the requests
to the salves as per the message flow required by the distributed embedded system.The application running
on the master can be dynamically fed the addresses and the sequence in which the messages should flow
using the addresses that were allocated to the device by using an application on the PC which is interfaced
with the master device. The addresses to the slave devices can be allocated as per the priority of the message
flow. A typical address allocation scheme that can be initiated from PC is shown in the Table 2.

Table 2. Address allocation algorithm
Serial

Number of
device

Type of
device

Device Model
Number

Allocated
address

Transmission
reception
priority

Reason for assigning the priority

1. Master LPC2148 70 1 Master has the priority over the salves

2. Slave-1 89C51 60 2 Temp-1 flow before other messages

3. Slave--2 AT89S52 50 3 Temp-2 must follow temp-1 in a fraction of
10µsec

4. Slave-3 PIC18F4550 40 4 Message to pump-1 must follow temp-2 within
20µsec

5. Slave-4 ATmega328 30 5 Message to pump-2 must follow the message to
pump-1 within 10µsec

IJECE ISSN: 2088-8708

Networking Heterogeneous Microcontroller based Systems through … (Sastry KR Jammalamadaka)

1000

However the messages from the slaves can be of different patterns and the same are to be handled as
per the priorities attached to those messages. The communication software running on the master, will post a
message along with its priority to a queue and a queue handler will despatch the messages as per the
priorities attached to the messages. The working of the priority based dispatching system for effecting the
flow of control of messages as required by the distributed embedded application is shown in the Figure 4.

Figure 4. Priority based message dispatching method

2.5. Designing Descriptors for Configuring the Slaves

The salve based systems that are interfaced through USB can be configured through different types
of descriptors. Different details of the salves can be made available to the master through descriptors. The
descriptors describes manufacturer ID, the version of the device, the version of USB it supports, what the
device is, its power requirements and the number of endpointsetc. The most commonly used USB descriptors
include Device descriptor, Configuration descriptor, Interface descriptor and Endpoint descriptor

Device descriptor represents the entire device. It provides the general information such as
manufacturer ID, serial number, product number, the class of the device and the number of configurations.
Configuration descriptor provides the information about the power requirements of the device and how many
different interfaces it supports. There may be more than one configuration for a device. The interface
descriptor specifies the class of the interface and the number of endpoints it uses. There may be more than
one interface.The Endpoint descriptor specifies the transfer type, direction, polling interval, and maximum
packet size for each endpoint. Endpoint0 is the default endpoint, is always assumed to be a control endpoint
and never has a descriptor.

In addition to above mentioned descriptors the USB protocol support the inclusion of more
application specific descriptors. A new descriptor is designed for making available the priority of the device
to the salve so that the same can be stored within it which can be used by the slave to check whether the
required message flow is being affected and report the irregular sequence to the master when such event
happens.

2.6. Designing Data Packets
In USB, the data is transferred in the form of packets. Normally it consists of three packets.

1. Token packet is the header defining the transaction type and direction, the device address, and the
endpoint.

2. Data is transferred in a Data packet.
3. The status of the transaction is sent by the acknowledgement through Handshake packet.

In a transaction, data is transferred either from the USB host to an USB Device or vice-versa. The
transfer direction is specified in the token packet that is sent from the USB Host. Then, the source sends a

 ISSN: 2088-8708

IJECE Vol. 5, No. 5, October 2015 : 992 – 1002

1001

data packet or indicates it has no data to transfer. In general, the destination responds with a handshake
packet indicating whether the transfer was successful.Packets could be thought of as the smallest element of
data transmission. Each packet transmits an integral number of bytes at the current transmission rate. Packets
start with a synchronization pattern, followed by the data bytes of the packet, and concluded with an End-of-
Packet (EOP) signal. All USB packet patterns are transmitted least significant bit first. Before and after the
packet, the bus is in idle state.
The data packet design of temp1 processing system is shown in the Table 3.

Table 3. Data packet design of temp1 processing system
Token Packet Sync IN ADDR ENDP CRC

0000 0001 0110 1001 0111100 0 5 bits

Data Packet Sync Data0 Data CRC

0000 0001 1100 0011 2 bytes 16 bits

Handshake Packet Sync ACK

0000 0001 1101 0010

The data packet design of temp2 processing system is shown in the Table 4.

Table 4. Datagram design of temp2 processing system
Token Packet Sync IN ADDR ENDP CRC

0000 0001 0110 1001 0110010 0 5 bits

Data Packet Sync Data0 Data CRC

0000 0001 1100 0011 2 bytes 16 bits

Handshake
Packet

Sync ACK

0000 0001 1101 0010

The data packet design of pump1 processing system is shown in the Table 5.

Table 5. Data packet design of pump1 processing system
Token Packet Sync OUT ADDR ENDP CRC

0000 0001 1110 0001 0101000 0 5 bits

Data Packet Sync Data0 Data CRC

0000 0001 1100 0011 2 bytes 16 bits

Handshake Packet Sync ACK

0000 0001 1101 0010

The data packet design of pump2 processing system is shown in the Table 6.

Table 6. data packet design of pump2 processing system
Token Packet Sync OUT ADDR ENDP CRC

0000 0001 1110 0001 0011110 0 5 bits

Data Packet Sync Data0 Data CRC

0000 0001 1100 0011 2 bytes 16 bits

Handshake Packet Sync ACK

00 1 1101 0

3. RESULTS AND DISCUSSION

Experiments have been conducted using the USB network designed and the distributed embedded
application system & the communication system implemented. Communication is effected by making the

IJECE ISSN: 2088-8708

Networking Heterogeneous Microcontroller based Systems through … (Sastry KR Jammalamadaka)

1002

data flow as per the communication system architecture. The results of the experiment conducted are shown
in the Table 7. The experimental results have also been validated by using PROTEUS simulator.

Table 7. Experimental results

T
ra

ns
ac

ti
on

 I
D

From To

W
he

th
er

 C
he

ck
su

m

er
ro

r
ex

is
ts

M
ic

ro
co

nt
ro

ll
er

sy

st
em

M
ic

ro
co

nt
ro

ll
er

sy

st
em

A

dd
re

ss

N
um

be
r

of
 b

yt
es

se

nt

M
ic

ro
co

nt
ro

ll
er

sy

st
em

M
ic

ro
co

nt
ro

ll
er

sy

st
em

A

dd
re

ss

N
um

be
r

of
 b

yt
es

R

ec
ei

ve
d

1 89C51 0111100 2 LPC2148 1000110 2 No

2 AT89S52 0110010 2 LPC2148 1000110 2 No

3 LPC2148 1000110 1 PIC18F4550 0101000 1 No

4 LPC2148 1000110 1 ATmega328 0011110 1 No

4. CONCLUSIONS

USB communication system is an effective protocol for networking of heterogeneous
microcontroller based systems. Reasonable speeds of communication can be achieved using the USB.A USB
network must be designed specific to a distributed embedded system considering the type of microcontrollers
that must be used for implementing the distributed embedded system.A specific architecture must also be
determined for implementing a communication system that is suitable to a distributed embedded Application.
USB protocol system does not support priority based message management system and therefore it became
necessary to investigate a method and implement the same which is suitable for a particular distributed
embedded application. The USB protocol system provides for an enumeration stage at which time the
information related to the devices is sent to a master for its complete understanding of the device. A new
descriptor has been added using which the priority of messaging is fed to the slave and to make the slave
store the same within it and use the same for checking the correctness of the message flow so that slave can
inform the master if wrong message flow for any reason has been initiated.

REFERENCES
[1] Ana Luiza de Almeida Pereira Zuquim Claudionor Jos C Nunes Coelho Jr. Antanio Ot6vioernandes. An Embedded

Converter from RS232 to Universal Serial Bus. IEEE Conference Publications. 2001: 91-96.
[2] Yong-Seok Kim, Hee-Sun Kim, Chang-Goo Lee. The Development of USB Home Control Network System. IEEE

Conference Publications. 2004; 289-293.
[3] Lalitha Ramadoss and John Y. Hung. A Study on Universal Serial Bus Latency in a Real-Time Control System.

IEEE Conference Publications. 2008; 67-72.
[4] Taghi. Mohamadi. Designing an Embedded System for Interfacing with Networks based on ARM. IEEE Conference

Publications. 2011; 407-410.
[5] J. Ducloux, P. Petrashin, W. Lancioni, L. Toledo. An Embedded USB Dual-Role System Integrated for Mobile

Devices. IEEE Conference Publications. 2012; 66-72.
[6] Disha Juriasinghani, Tanay Krishna Dev. Embedded System for USB WiFi Bridge. International Journal of

Engineering Research and Applications (IJERA). 2013; 2(1).
[7] Tushar Sawant, Prof. Sanjay Deshmukh, Shilen Jhaveri, Siddarth Bhatt. Implementation of USB to USB Bridge for

Computer Independent Data Transfer. IJCET. 2013; 4(2): 300-308.
[8] A. Ying Huang, Xiaoyong Fang. Study and Implement of an Embedded System Based on USB Host. International

Journal of Advanced Computer Technology (IJACT). 2013; 2(5): 14-20.
[9] Singh Harpeet, Kaur Kamaldeep. Flash Drive Communication Using Embedded System. International Journal of

Engineering and Computer Science. 2014; 3(2): 3947-3950.
[10] Yassine Bouterra, AlaaChabir, Asma Ben Mansour. Development and Implementation of a real time system for

distributed control of laboratory robot. IEEE Conference Publications. 2014; 1-5.
[11] D. Anderson, D. Dzatko. Universal Serial Bus System Architecture. Text Book.
[12] Dogan Ibrahim. Advanced PIC Microcontroller projects in C. Text Book. 409-461.

