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 To deploy the enormous hardware resources available in Multi-Processor 
Systems-on-Chip (MPSoC) efficiently, rapidly and accurately, Design Space 
Exploration (DSE) methods are needed to assess the different design 
alternatives. In this paper, we present a platform that makes fast simulation 
and performance evaluation of MPSoC possible early in the design flow, thus 
reducing the time-to-market. In this framework and within the Transaction 
Level Modeling (TLM) approach, we present a new definition of Instruction 
Set simulation (ISS) level by introducing two complementary modeling 
sublevels ISST and ISSPT. This later, that we illustrate an arbiter modeling 
approach that allows a high performance MPSoC communication. A round-
robin method is chosen because it is simple, minimizes the communication 
latency and has an accepted speed-up. Two applications are tested and used 
to validate our platform: Game of life and JPEG Encoder. The performance 
of the proposed approach has been analyzed in our platform MPSoC based 
on multi-MicroBlaze. Simulation results show with ISSPT sublevels gives a 
high simulation speedup factor of up to 32 with a negligible performance 
estimation error margin. 
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1. INTRODUCTION  

The literature shows that much of the design time is spent in the performance evaluation. In 
addition, the iterations in the design flow become prohibitive for complex systems. Therefore, achievement 
of high performance MPSoCs is a challenge. The solution is strongly linked to the availability of fast and 
accurate methods for the design and performance evaluation [1]. A modeling approach to reduce the time of 
design and validation time for MPSoCs is to use the Transaction Level Modeling models (TLM) [2]. So with 
TLM, we can validate the behavior for both the hardware and the software components of MPSoC platform 
as well as the interaction between them. 

Besides, TLM cosimulation also allows the performance evaluation of the whole system at the 
earlier stages of the design flow before making a prototype, which is faster than HDL register-transfer level 
(RTL) simulation [3] [4]. 

For this work, an open source ISS is used and components modeled with SystemC language Version 
2.2.0 [5] and TLM methodology, derived from SocLib [6]. 

We adopt a strategy for estimating the performance at two levels: Cycle Accurate Bit Accurate 
(CABA) and Instruction Set Simulator with priority management and timing ISSPT.  

Our objectives in this publication are: 
• to develop a rapid exploration of performance of design MPSoC tool; 



                ISSN: 2088-8708 

IJECE Vol. 5, No. 5, October 2015 :  975 – 983 

976

• to show that the ISSPT model offers a better alternative than (a: fast simulation and imprecise) and 
(b: simulation with an increased accuracy but at the cost of longer simulation), but at the cost of an additional 
modeling effort. This latest effort is nevertheless quite acceptable in contrast to the loss of accuracy in (a) or 
loss of simulation speed in (b). In spite of these losses, (a) and (b) are now widely used in system evaluation, 
this is only because it lacked a better alternative. 

The rest of this paper is organized as follows: an overview of related work on ex-isting platform of 
simulation with TLM for MPSoC is provided in section 2. Section 3 describes the architecture of the multi-
MicroBlaze system. Section 4 presents the simulation platform and modeling of ISSPT with round-robin 
approach.  Section 5 describes the performance estimation in ISSPT. Section 6 presents the exemples of 
software. Finally in section 7 describes the results of the applications running on the platform. 
 
 
2. RELATED WORK 

A lot of works on design exploration and performance evaluation for embedded systems MPSoC 
have been conducted. As a result of these researches, many of exploration environments are proposed, such 
as MILAN [7], STARSoC [8] and SimSoC [9]. The work presented in this paper can be seen as 
complementary to these environments. 

Since the first appearance of TLM in 2000 [10], an increasing number of research projects have 
examined the problem of its definition, which led to several frameworks [11] [12] [13] and a multitude 
versions latest is TLM 2.0.1. All these studies have two factors in common: 

1)   TLM is featured on several levels; 
2) The aspects of communication and computing platforms are separated. 
Viaud and al. [14] were the first who proposed have an efficient TLM with timing modeling and 

simulation environment based on parallel discrete event principles. They obtained a long runtimes simulation 
factor but they did not measure this runtimes on real applications. Their model is also different from ours. 
Firstly, with our approach we can be applied for hierarchical or distributed MPSoC design, and secondly, it is 
open-source. 

Kim [15] and Boukhechem [8] proposed a new technique for HW/SW co-simulation for 
heterogeneous MPSoC platforms in timing model PVT, we have all advantages of PVT that we refined in 
order to add it as a priority management. Also we integrated computation and communication simulation. 
 
 
3. ARCHITECTURE 

The basic architecture of the platform implemented in VHDL and generated from Xilinx Platform 
Studio, consists of: 1, 2 or 3 MicroBlazes each one connected with a private memory 64 KB BRAM via the 
LMB bus processors. Processors are also connected to the OPB bus [17], SRAM memory of 32MB [16], an 
interrupt handler, VGA controller, timer and GPIO. A high-level view of the architecture of multi-core 
MicroBlaze is illustrated in Figure 1. 

 
 

 
 

Figure 1. Multi-MicroBlaze basic architecture 
 
 
 The same concept that is implemented in VHDL, it is implemented in SystemC environment. 

Figure 2 summarizes our framework proposal. 
 
 
 
 
 
 

Shared Memory 
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  Master socket (initiator) 
 Slave socket (target) 
 Interrupt input 

 
Figure 2. Platform architecture with 2 processors 

 
 
In our case study, in ISS (Instruction Set Simulator) simulation and by using inter-process 

communication, we connect two ISSs (two processors) with SystemC communication models. Therefore, it is 
easy to add or to remove a processor from the MPSoC design. The interconnection is based on OPB bus [17] 
described in TLM SystemC. Communication model uses communication mechanism for the shared memory, 
the bus arbitration mechanism is managed by bus arbiter which implemented by the round-robin arbitration 
policy (described in Network interconnection model section). 

 
 

4. SYSTEMC SIMULATION PLATFORM 
Provide a statement that what is expected, as stated in the "Introduction" chapter can ultimately 

result in "Results and Discussion" chapter, so there is compatibility. Moreover, it can also be added the 
prospect of the development of research results and application prospects of further studies into the next 
(based on result and discussion). 

 
4.1. Processor Model and Simulation  

With the TLM approach, the behavior of a processor has two major descriptions ISS and CABA 
(Cycle Accurate/Bit Accurate). In the ISS, the processor description is modeled with a specific instruction 
level simulator. Instructions are executed sequen-tially without referencing to the micro-architecture of the 
component. CABA models the behavior of the system at each cycle similar to the RTL level, Indeed, the 
CABA level modeling is based on the theory of "finite state machine (FSM) interconnected synchronous" 
(Synchronous Communicating Finite State Machines) [19] [20] [21]. 

The estimated performance in new ISSPT (Instruction Set Simulation with timing and priority 
management) level returns to evaluate performance of two parts calcula-tion and communication time. 

For calculation time, to assess the time of each task we used the simulator Micro-Blaze processor 
ISS level but adding time. For this we mainly identified the number and type of instructions executed as 
relevant activities in the processor component. 

Timing execution instructions of MicroBlaze processor is estimated from the tech-nical 
documentation provided by Reference Guide of MicroBlaze [16]. 

Below is an example of our thread implementation to implement the functionality of the calculation 
part (processor) described in level ISSPT. For communication time is detailed in Bus and Network 
interconnection model section. 
void MicroBlazeIss::step(void) { 
/* decode of instruction outstanding */ 
IDecode(m_ir, &ins_opcode, &ins_rd, &ins_ra, &ins_rb, &ins_imm); 
switch (ins_opcode) { 
//execution of instruction 
case OP_ADD: 
next_pc = r_npc + 4; 
Wait(ADD_delay,sc_core::SC_NS) 
break; 

Two distinct Linux 
processes 

SystemC environment 
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……… 
//load of data 
case OP_LW: 
….. 
 LOAD(READ_WORD, addr, time); 
 next_pc = r_npc + 4; 
Wait(Transaction_delay,sc_core::SC_NS) 
 break; 
…………. 
   } 
} 
 
4.2. Memory Model 

The memory module that we designed is a passive "slave" component composed of two concurrent 
parts, one for instructions and one for data. A memory transaction includes two methods: read and 
write. This structure allows us to accelerate the simulation. These two methods are called and executed 
directly in the thread initiator connected to the memory component.  

In our environment, the target port is connected directly to the bus. Data part memory is shared 
between the processors. Access time and cycle time parameters are added to the component description to 
estimate performance. 

 
4.3. Bus and Network Interconnection Model 

Our architecture platform is designed around the OPB bus (On-Chip Peripheral Bus) whose 
architecture was developed by IBM [17]. The bus supports various features depending on the desired bus 
operations: single cycle read/write, multiple masters, block transfer. In our work, we use OPB Bus connected 
Xilinx MicroBlaze processor. 

In this paper, we have limited develop an integrated Bus crossbar, which is based on two main 
features routing and arbitration see Figure 3 and 4. The router is a generic component that directs a request 
from an initiator to the target in question, using a routing table specified. When a new transaction get from 
initiator, the router reads the corresponding addresses and selects an output port, this process is illustrated in 
Figure 3. 

 
 

 
 

Figure 3. Router component 
 
 

To manage conflicts between multiple simultaneous requests to a target, we developed an active 
component called “arbiter” to schedule the access to shared resources. When initiator needs access to a 
shared target, via the interconnection network, it sends a request using the corresponding communication 
channel and waits for the response. At the arbiter, one thread reads queries present in the FIFO of each 
communication channel and selects the priority request based on the arbitration round-robin strategy. After 
processing by the target, the arbiter transmits the response in the corresponding FIFO of the communication 
channel. 

The initiator retrieves the response and completes the transaction. This communication management 
blocks a router during the processing of the request by the target, which can be a drawback. However, it has 
the advantage, simplification of the protocol and reduced the number of ports. These two factors can 

 
 
 
 
 
 
 
 
 

Run() 
{ 
Read_new_address() 
Switch (address){ 
     Select_port(); 
  } 
} 

To slave 0 
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Port 0
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accelerate the simulation. Our arbiter plays a second role very important, is used for the estimation of delays 
in the interconnection network. 

 
 

 
 

Figure 4. Arbiter component 
 
 
Figure 5 shows the implementation of a crossbar from the two modules "router" and "arbiter". This 

architecture is relatively simple, but sufficient to achieve our objective to observe the restraints and retrieve 
information about latencies. Several interconnection topologies can be designed as multi-stage network. 

 
 

 
 

Figure 5. Crossbar implementation 
 

 
5. PERFORMANCE ESTIMATION IN ISSPT 

The moment when a processor performs its corresponding memory access can affect the access time 
of the other processor in a collision. Figure 6 shows an example of contention detection error in the 
interconnection network due to non -compliance with the deadlines events (Packet setup, Routing and 
Arbitration). When the transmitted packet from processor 1 arrives at the router (R & A in Figure 6), there is 
no possibility of detecting the occupation of the router by the processing of the packet coming from processor 
0. In effect, events in the sub-level ISST are instantly executed (zero delay). This abstraction changes the 
behavior of the party in the communication system, which reduces the precision of performance estimation. 
To solve this problem, we have improved the sublevel ISS by introducing synchronization instructions. They 
take into account the time of component activities, delays in forwarding packets and finally the 
communication protocol. These are the characteristics of the ISSPT level. 

To compare the estimation error between ISSPT level and CABA level in our platform, we had to 
implement the specifications of the OPB protocol. To emulate the same behavior of the OPB protocol in 
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ISSPT sublevel and observe the behavior of components, the wait () statements have been added in the 
description of the components and before the transmission of orders and answer queries. The wait () 
statements added require arguments expressed in units of time such as nano seconds (ns) or number of cycles. 
In our experiments, these arguments are measured from CABA platform. Table 1 shows time made in the 
ISSPT level. 
 
 

 
LT0: Local Timer 0; LT1: Local Timer 1; DReq: Data Request 
Pkset: Packet Setup; R&A: Routing and Arbitration; Acce: Memory Access 
TPkset: Packet Setup time; TNet: Network time 

 
Figure 6. Timing estimation in ISSPT sublevel 

 
 

Table 1. Time activities used in the experiments 
Activities Time (cycles) 

Preparing an OPB command request 4 

Preparing a response OPB request 5 

Execution of an instruction 1 

read memory access 2 

write memory access 2 

VGA 360000 

 
 

6. SOFTWARE INTEGRATION 
The application layer has two softwares and was tested in the platform: 
• The game of life is an infinite two-dimensional orthogonal grid of square cells, each of which is in 

one of two possible states, alive or dead. Every cell interacts with its eight neighbors, which are the cells that 
are horizontally, vertically, or diagonally adjacent [18], 

• JPEG Encoder is a minimalistic JPEG encoder written in C. It is both “portable” (tested on x86 
and MicroBlaze) and “lightweight” (around 600 LOC).  Application allows us to write JPEG compressed 
images from input image data on memory. It works in “grayscale only” (monochrome JPEG file): there is no 
support for color so far, 

* It produces baseline, DCT-based (SOF0), JFIF 1.01 (APP0) JPEG-s, 
* It supports “8x8 blocks only”, 
* It includes default quantization and Huffman tables that are not customizable at runtime. 
Generally, for each application, it executed by 1, 2 or 3 processors, it is stored in their local memory 

and they executed in parallel and synchronized by the same clock system. 
 
 
7. RESULTS AND DISCUSSION 

We present results that we carried out to validate our platform and evaluate its performances. We 
also compare performances among the different abstraction levels. 

The same environment was employed for simulation on different abstraction levels. The results of 
simulation were gotten by running the platform on a core 2 duo with a RAM memory size of 1GB, based on 
Linux Fedora 8 Core 3.1. ISS was built by the GNU cross-compiler (GCC version 3.4.6). 
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7.1 Simulation Results in CABA, ISST and ISSPT. 
Figure 7 and 8 shows Speedup and precision simulation results for CABA, ISST and ISSPT with 

Game of Life as a software, and the same simulation shown in Figure 10 and 11 with JPEG Encoder.  
Speedup corresponds to the simulation or execution time of software at the different simulation abstraction 
levels. 

t2 = ‘end time’, t1 = ‘start time’. 
Speed-up formula:   
ሺ୲ଶି୲ଵሻx	

ሺ୲ଶି୲ଵሻbit
  

Precision formula: ∆x -∆bit 
With ‘x’ = ‘CABA’,’ ISST’ or ‘ISSPT’. 

 
 

 
 

Figure 7. Speedup simulation results for CABA, ISST and ISSPT, software used: Game of life 
 
 

 
 

Figure 8. Precision simulation results for CABA, ISST and ISSPT, software used: Game of life 

 
 

Figure 9. Speedup simulation results for CABA, ISST and ISSPT, software used: JPEG Encoder 
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Figure 10. Precision simulation results for CABA, ISST and ISSPT, software used: JPEG Encoder 
 
 

Models were simulated: ISSPT, ISST and CABA, we tested CABA model by its comparing a 
synthesizable RTL model (using VHDL generated from Xilinx Platform Studio and simulated with 
ModelSim) [19]. The first two models are used to validate the software and the system architecture (they 
include the ISSs, bus model at transaction level, and models of other components, all blocks use SystemC 
models). 

We validated the simulation by the same Testbenches, after running the environment we obtained 
these experimental results: 
 The CABA has an important precision [19]. 
 ISSPT model is about 20 times faster than the CABA model. 
 ISSPT model is about 2 times faster than the ISST model. 
 The addition of new processors in the system increases the acceleration factor, which is explained by the 

amplification of the communication between the processors and shared memory modules. 
 The nature of the software running on the platform impacts performance in differences levels. 

A precise analysis of the trace produced by the SystemC simulator shows that 80% of the simulation 
time is made for the execution of the function of the bus while the simulation time of the calculation part is 
low which reflects our choice to treat the case of ISSPT. 
 
7.2 Modeling Effort 

So far we have shown the usefulness of our approach in terms of acceleration of the simulation and 
in terms of performance estimation. However, this approach has proven effective also in terms of modeling 
effort. It allows designers the development and validation of MPSoC systems in less time. Table I2 presents 
the modeling effort expressed in terms of lines of code (LOC) needed to design an MPSoC system in the 
CABA and ISSPT levels. According to the results, the modeling effort with ISSPT is reduced of a factor of 
59%. The use of a multi-level simulation strategy (with objectives) quickly allows focusing on a subset of 
MPSoC systems without having to increase the modeling efforts for each level of abstraction. 

 
 

Table 1. Comparing the modeling effort 
Abstract level CABA ISSPT 
Modeling effort(LOC) Processor 1578 1259 

Bus 399 170 
Memory 312 133 
VGA 650 167 
Timer 340 231 
Total 3279 1960 

Reduction (%)  59% 

 
 
8. CONCLUSION 

In this paper, we have presented and validated our methodology for MPSoC cosimulation at a high 
level of abstraction (SystemC-TLM) within a single simulation environment based on SystemC language. 
Our environment is based on the use of open source ISSs models of MicroBlaze wrapped under SystemC by 
using UNIX inter-process communication. Comparing three different abstraction levels, namely, ISSPT 
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which implement ISS (Instruction Set Simulator) with priority and timing management, ISST level which 
implement ISS with timing and finally, CABA Cycle Accurate Bit Accurate. 

The experimental results show that the use the ISSPT approach with SystemC-TLM reduces the 
design validation time and permit developing models rapidly with an acceptable precision. This motivates 
our choice for SystemC and TLM as a system design methodology, dedicated to architecture exploration in 
our project which is the main contribution of this work. As perspective, we think to develop models for 
estimating the energy consumption at different levels. 
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