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 One of the key functions of the Distribution System Operators (DSOs) of 
electrical power systems (EPS) is to minimize the transmission and 
distribution power losses and consequently the operational cost. This 
objective can be reached by operating the system in an optimal mode which 
is performed by adjusting control parameters such as on-load tap changer 
(OLTC) settings of transformers, generator excitation levels, and VAR 
compensators switching. The deviation from operation optimality will result 
in additional losses and additional operational cost of the power system. 
Reduction of the operational cost increases the power system efficiency and 
provides a significant reduction in total energy consumption. This paper 
proposes a mathematical model for minimizing the additional (add-on) costs 
based on Design of Experiments (DOE). The relation between add-on 
operational costs and OLTC settings is established by means of regression 
statistical analysis. The developed model is applied to a 20-bustest network. 
The regression curve fitting procedure requires simulation experiments 
which have been carried out by the DigSilent PowerFactory 13.2 Program for 
performing network power flow. The results show the effectiveness of the 
model. The research work raises the importance the power system operation 
management of the EPS where the Distribution System Operator can avoid 
the add-on operational costs by continuous correction to get an operation 
mode close to optimality.
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1. INTRODUCTION  

Technical power losses caused mainly by the resistance of EPS components include losses in the 
transmission, subtransmission, distribution system components, and in the connection links from distribution 
to consumers. Transmission and Distribution losses in the developed countries are in range from 4-12% [1, 
2], while losses may increase to over 30% in other countries. Technical losses are possible to compute and 
control, provided the data of the concerned power system including load profile is available.  

The value of power losses is one of the key indicators for quality of EPS operation. Operators of 
power systems make certain that the system is operating in or close to an optimal mode, so that the quality 
and reliability of supply to consumers are ensured. From the viewpoint of customers, the EPS should deliver 
electrical energy with high power quality in terms of voltage and frequency, high reliability, and minimal 
cost [3, 4, 5, 6]. Moreover, the green house emissions of the generation system should be reduced according 
to international regulations [7].  
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Any variations in the power system configuration or in the load profile alongside the nonsymmetry 
and nonlinearities of EPS can cause deviation from the ideal optimal mode. This deviation results in add-on 
power losses and consequently additional operational cost of supplied electrical energy. To enhance this 
situation, the load bus voltages should be maintained within specified limits. This goal can be achieved by a 
set of actions such as controlling generators excitation, switching reactive power compensators, and adjusting 
on load line tap changer (OLTC) of grid transformers [8, 9, 10, 11].    

This paper focuses on minimizing the add-on power losses and operational costs by adjusting the 
OLTC of grid transformers. The basis of the study methodology is the Design of Experiments (DOE) 
approach which helps to detect the impact of inputs-factors on the output-response while realizing the 
objectives. This statistical theory found its applications in many areas including EPSs [12]. 
 
 
2. POWER LOSSES VERSUS CONTROL FACTORS 

To obtain the power losses ∆ࡼ as a function of control parameters  (for example OLTC setting of 
transformer i  whose value corresponds to its turns ratio ࢏ࡷ), let us assume that the load profile of a power 

system is changed from m-variant to( m+1) variant with optimal losses	∆࢚࢖࢕ࡼ
ሺ࢓ሻ corresponding to ࢏ࡷ	࢚࢖࢕

ሺ࢓ሻ  , and 

࢚࢖࢕ࡼ∆
ሺ࢓ା૚ሻ corresponding to ࢏ࡷ	࢚࢖࢕

ሺ࢓ା૚ሻ, respectively. If the control parameters of the second mode (m+1) has 

some value ࢏ࡷ
ሺ࢓ା૚ሻ which is not the optimal factor, the losses would be ∆ࡼሺ࢓ା૚ሻ	 leading to additional losses 

ࢊࢊࢇࡼࢾ
ሺ࢓ା૚ሻ as follows: 

 
ࢊࢊࢇࡼࢾ

ሺ࢓ା૚ሻ ൌ ା૚ሻ࢓ሺࡼ∆ െ ࢚࢖࢕ࡼ∆
ሺ࢓ା૚ሻ ൌ ࢏ࡷሺ܎

ሺ࢓ା૚ሻ െ ࢏ࡷ ࢚࢖࢕
ሺ࢓ା૚ሻሻ (1) 

	
In general equation (1) can be written as 
 

࢏ࢊࢊࢇࡼࢾ ൌ  ሻ (2)࢏ࡷሺࢌ
 
and, in terms of add-on operational cost, as: 
 

࢏	ࢊࢊࢇ࡯
ሺ࢓ା૚ሻ ൌ ࢏	ࢊࢊࢇࡼࢾ

ሺ࢓ା૚ሻࢀሺ࢓ା૚ሻ ∗  (3) ࡮
 
where, 

࢏	ࢊࢊࢇࡼࢾ
ሺ࢓ା૚ሻ   actual add-on powe losses for (m+1)-mode for transformer ࢏ 

		profile	load	daily	the	by	defined	mode	load	ሺm+1ሻ	of	duration	time						ା૚ሻ࢓ሺࢀ
B															cost	of	energy	ሾUSD/kWhሿ	

From the above-mentioned equations, we can observe a relationship between add-on operational 
cost  ࢊࢊࢇ࡯ and the switching-steps number of each transformer ࢏࢔. This relation can be predicted by use of 
linear regression procedure based on data acquired from designed experiments.  
	
	
3.  STATISTICALLY-DESIGNED EXPERIMENTS AND REGRESSION    

Experimental design is a statistical theory that addresses the design and analysis of experiments. In 
an experimental study, one or more factors (independent variables) are changed so that the factors influence 
another variable referred to as the (response variable), or simply the response is obtained. The data obtained 
by conducting the experiments is analyzed by regression. Regression analysis serves to identify the 
relationship between a dependent variable (response) and one or more independent variables (factors). A 
linear or nonlinear regression model of the relationship is hypothesized, and the regression coefficients are 
calculated using the experimental data and the least-square method to develop an estimated regression 
equation. Experimental data are then employed to determine if the model is satisfactory. If the model is found 
to be satisfactory, the estimated regression equation can be used to predict the value of the dependent 
variable’s given values for the independent variables [13].  
The polynomial regression model   
 

࢑࢟ ൌ ૙ࢇ ൅ ࢑࢞૚ࢇ ൅ ࢑࢞૛ࢇ
૛ ൅	…൅ ࢑࢞ࢌࢇ

ࢌ ൅ ࢑ࢿ ሺ࢑ ൌ ૚, ૛, …  ሻ (4)ࡺ,
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can be expressed in matrix form in terms of a design matrix , a response vector ࢟ሬሬԦ, a parameter vector ࢇሬሬԦ, 
and a vector ࢿሬԦ of random errors. The ࢎ࢚࢏ row of  and ࢟ሬሬԦ will contain the x and y values for the ࢎ࢚࢏ data 
sample. Then the model can be written as a system of linear equations [12, 15, 16]: 
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(5) 

 
which when using pure matrix notation is written as 
 

ሬሬԦ࢟ ൌ ሬሬԦࢇࢄ ൅  ሬԦ (6)ࢿ
 
The vector of estimated polynomial regression coefficients (using ordinary least-squares method) is: 
 

ሬሬԦ෡ࢇ ൌ ሺ܆܂܆ሻି૚࢟܂܆ሬሬԦ (7) 

 
The final regression model fitting the experimental data is: 
 

ෝ࢟ ൌ ܆ෝࢇ ൌ  (8) ࢟܂܆ሻି૚܆܂܆ሺ܆
 

Equation (2) that shows add-on loss ࢏ࢊࢊࢇࡼࢾ as a function of ࢏ࡷ can be considered as a relation 
between add-on loss and switching step number of OLTC setting ࢏࢔ which can be determined as:  
 

࢏࢔ ൌ อ
࢕࢏ࡷ
ሺ࢓ሻ െ ࢕࢏ࡷ

ሺ࢓ା૚ሻ

࢏	࢖ࢋ࢚࢙ࡷ
อ (9) 

 
where, ࢖ࢋ࢚࢙ࡷ	࢏  is position step of OLTC of  transformer i. With a suitable scaling of the vertical axis, 
Equation (2) can be written as ࢊࢊࢇ࡯	࢏ ൌ  ሻ. The values of additional operational cost can be computed by࢏ࡷሺ܎
running a power flow software for the EPS with various load modes and designed experiments concerning 
the sets of OLTC of transformers.     

To apply a regression analysis, a regression model should first be selected. Regression models 
estimate y values for known x values. The second order polynomial regression model is selected as: 
 

࢑ෝ࢟ ൌ ૙ࢇ ൅ ࢑࢞૚ࢇ ൅ ࢑࢞૛ࢇ
૛ (10) 

 
Using the least squares method, the normal equations are formulated as:  
 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ࡺ ෍࢑࢞

ࡺ

ୀ૚࢑

෍࢑࢞
૛

ࡺ

ୀ૚࢑

෍࢑࢞

ࡺ

ୀ૚࢑

෍࢑࢞
૛

ࡺ

ୀ૚࢑

෍࢑࢞
૜

ࡺ

ୀ૚࢑

෍࢑࢞
૛

ࡺ

ୀ૚࢑

෍࢑࢞
૜

ࡺ

ୀ૚࢑

෍࢑࢞
૝

ࡺ

ୀ૚࢑ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
૙ࢇ

૚ࢇ

૛ࢇ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ෍࢑࢟

ࡺ

ୀ૚࢑

෍࢑࢟࢑࢞

ࡺ

ୀ૚࢑

෍࢑࢞
૛࢑࢟

ࡺ

ୀ૚࢑ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (11) 

	
These normal equations have unique solutions provided that 		࢑࢞	  is distinct. 

The curve fitting can be performed by Matlab using the toolbox cftool (xdata, ydata) which opens 
Curve Fitting Tool with data, factors xdata and ydata.  xdata and  ydata must be vectors of the same size. 
The results include values of constants a’s and the indicators of goodness of fit: SSE, R2, adjusted R2 and 
RMSE. 
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The regression model in terms of factors and response of transformer ࢏ is represented as:   
 

࢑࢏,ࢊࢊࢇ෡࡯ ൌ ૙ࢇ ൅ ࢑࢏࢔૚ࢇ ൅	ࢇ૛࢑࢏࢔
૛  (12) 

 
where ۱෠࢑࢏,ࢊࢊࢇ and ࢑࢏࢔ represent ࢟ෝ࢑ and ࢑࢞, respectively. 

 
 

4. CASE STUDY 
 

4.1   Test Network 
The electrical network used in this study is given in Figure 1.  It consists of 20 buses, 20 branches 

and 10 transformers, 5 of which are equipped with OLTCs.  
 
 

 
 

Figure 1. Single Line diagram of the test network 
 

 
The input data are summarized in Tables 1, 2 and 3.   
 
 

Table 1. Data of the 20–bus test network 
Bus No. PL (MW) PG (MW) Bus No. PL (MW) PG (MW) 

1 0.00 0.00 11 0.00 0.00 
2 40.00 100.00 12 0.00 0.00 
3 45.00 100.00 13 40.00 18.60 
4 40.20 100.00 14 0.00 0.00 
5 30.00 100.00 15 0.00 0.00 
6 0.00 0.00 16 0.00 0.00 
7 0.00 0.00 17 0.00 0.00 
8 0.00 0.00 18 0.00 0.00 
9 36.20 16.50 19 70.00 26.60 
10 63.80 28.80 20 65.00 28.20 
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Table 2. Branches data of test network 

Branch No. From Bus To Bus 
Series Impedance (p.u) 

Tap Setting MVA Rating 
R X 

1. 1 6 0.00000 0.13000 - 500.00 
2. 2 14 0.00000 0.11000 - 500.00 
3. 3 15 0.00000 0.11000 - 500.00 
4. 4 16 0.00000 0.11000 - 500.00 
5. 5 17 0.00000 0.11000 - 500.00 
6. 6 7 0.05700 0.17370 - 150.00 
7. 6 12 0.04158 0.16144 - 150.00 
8. 6 14 0.05300 0.12700 - 150.00 
9. 7 8 0.03018 0.09196 - 150.00 

10. 7 20 0.00000 0.12600 1.0681 100.00 
11. 8 9 0.00000 0.12000 1.0681 80.00 
12. 8 18 0.05091 0.15326 - 150.00 
13. 11 10 0.00000 0.12600 1.0681 80.00 
14. 11 12 0.06173 0.18596 - 150.00 
15. 11 15 0.02079 0.06335 - 150.00 
16. 12 13 0.00000 0.10740 1.0681 63.00 
17. 15 16 0.02884 0.08787 - 150.00 
18. 16 17 0.07376 0.22479 - 150.00 
19. 17 18 0.06639 0.20231 - 150.00 
20. 18 19 0.00000 0.12600 1.0681 100.00 

 
 

Table 3. Data of the transformers and modes losses 
Transformer No 1 2 3 4 5 6 7 8 9 10 

 0.0788 0.0788 0.0788 0.0788 0.0788 - - - - - ࢏	࢖ࢋ࢚࢙ࡷ
 4.000 4.000 4.000 4.000 4.000 0.1136 0.1136 0.1136 0.1515 0.1515 ࡻ	࢖ࢋ࢚࢙ࡷ	
 ૚ - - - - - 4.0788 4.0788 4.0788 4.0788 4.0788	࢖ࢋ࢚࢙ࡷ
 ૛ - - - - - 4.1576 4.1576 4.1576 4.1576 4.1576	࢖ࢋ࢚࢙ࡷ
 ૜ - - - - - 4.2364 4.2364 4.2364 4.2364 4.2364	࢖ࢋ࢚࢙ࡷ
 ૝      4.3152 4.3152 4.3152 4.3152 4.3152	࢖ࢋ࢚࢙ࡷ
 ૞ - - - - - 4.3949 4.3949 4.3949 4.3949 4.3949	࢖ࢋ࢚࢙ࡷ

Mode 1 (Optimal)           
 4.0000 4.0000 4.0000 4.3949 4.3949 0.1136 0.1136 0.1136 0.1515 0.1515 ࢒ࢇ࢓࢏࢚࢖࢕ࡷ
;ࡻࡼ∆ 	MW 19.565 

Mode 2 (Peak)           
 4.0000 4.0000 4.2364 4.0000 4.0000 0.1136 0.1136 0.1136 0.1515 0.1515 		࢏ࡰ

;ࡼ∆ 	MW 31.68 

OLTC:			࢏࢔
ᇱ -   - - 5 5 5 5 5 

 
 
Figure 2 shows Load Mode (m)–optimal and (m+1)- peak) power losses in MW, without proper tapping of 
the 5 transformers . 
 
 

 
 

Figure 2. Power Losses of modes m and (m+1) Load varents 
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The 5 single-factor test scenarios are shown in Table 4, from which the fitted regression curves are obtained 
by Matlab.   

 
 

Table 4. Single-Factor Test Scenario for Load Mode (m+1)  

Scenarios  
T6 

TC setting 
T7 

TC setting 
T8 

TC setting 
T9 

TC setting 
T10 

TC setting 
ΔP 

MW 
δP 

MW 
1 1 0 0 0 0 38.24 6.56 
2 2 0 0 0 0 35.46 3.78 
3 3 0 0 0 0 34.77 3.09 
4 4 0 0 0 0 34.08 2.40 
5 5 0 0 0 0 33.53 1.85 
6 0 1 0 0 0 39.86 8.18 
7 0 2 0 0 0 39.66 7.98 
8 0 3 0 0 0 39.57 7.89 
9 0 4 0 0 0 39.42 7.74 
10 0 5 0 0 0 39.21 7.53 
11 0 0 1 0 0 36.70 5.02 
12 0 0 2 0 0 34.49 2.81 
13 0 0 3 0 0 33.82 2.14 
14 0 0 4 0 0 33.44 1.76 
15 0 0 5 0 0 32.44 0.759 
16 0 0 0 1 0 39.68 8.00 
17 0 0 0 2 0 38.15 6.471 
18 0 0 0 3 0 36.12 4.439 
19 0 0 0 4 0 35.894 4.214 
20 0 0 0 5 0 34.63 2.95 
21 0 0 0 0 1 39.66 7.98 
22 0 0 0 0 2 39.16 7.48 
23 0 0 0 0 3 39.17 7.49 
24 0 0 0 0 4 39.18 7.50 
25 0 0 0 0 5 39.21 7.53 

 
 

From Figure 3 it is obvious that the transformers 7 and 10 have negligible effects on add-on 
operational costs, while the transformers 6, 8, and 9 are considered as critical components. Therefore, we 
check the multifactor scenarios of transformers 6, 8 and 9. The number of these scenarios should be 2^3 = 8. 
The power flow for these scenarios result in values of power losses and add-on costs as shown in Table 5. 

 
 

 
 

Figure 3. Fitted regression curves of the 5 single-factor test scenarios 
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0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 OLTC  Settings

Add-on Operational Costs, depending on the step of OLTC for each 
transformer, USD

Transformer 6
Transformer 8
Transformer 9



IJECE  ISSN: 2088-8708  

A Mathematical Model for Minimizing Add-On Operational Cost in Electrical Power … (Zakaria Al-Omari) 

954

Table 5. Multifactor Test Scenarios for Load Mode (m+1) 
Scenarios No; T6 T8 T9 ΔP; MW δP; MW 

1    44.425 12.745 
2 +   35.054 1.107 
3  +  38.444 6.764 
4   + 39.65 7.97 
5  + + 37.85 6.17 
6 + + + 31.73 0.05 
7 + +  32.207 0.527 
8 +  + 34.536 2.856 

 
 

Figure 4 shows Load flow results of power losses and add-on power losses of  Multifactor Experiments  for  
Load  Mode (m+1) load. 
 
 

 
 

Figure 4.  Load flow results of power losses and add-on power losses of Multifactor Experiments for Load 
Mode (m+1) 

 
 

The graphical chart of add-on operational losses and add-on operational costs of multi-factor test 
scenarios for Load Mode (m+1) is shown in Figure 5. 

 
 

 
 

Figure 5. Add-on operational losses and add-on operational costs of multi-factor test scenarios for Load 
Mode (m+1) 
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From Figure 5 it is obvious that the scenario 6 gives the minimum additional power losses of 0.05 
MW and consequently the lowest add-on operational cost. This scenario dictates that the OLTC settings of all 
three transformers should be at the high position (Step 5). 

 
 

5. CONCLUSIONS 
The paper presents a mathematical model and an algorithm of minimizing the add-on operational 

real power losses and add-on operational cost in electrical power systems, based on Design of Experiments 
approach and polynomial linear regression. The model takes into consideration the control parameters of 
OLTC transformers. However, it can easily be extended to consider other control variables such as generator 
excitation levels, and VAR compensators switching. The developed model and algorithm should be 
beneficial for Distribution System Operator in detecting critical transformers and meeting proper tapping to 
minimize the power system add-on losses. The model has been successfully applied to a test network and the 
results obtained were examined and discussed.  
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