
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 2, April 2015, pp. 289~296
ISSN: 2088-8708 289

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

The Extended Dijkstra’s-based Load Balancing for OpenFlow
Network

Widhi Yahya1, Achmad Basuki2, Jehn-Ruey Jiang3

1,2Department of Electrical Engineering, University of Brawijaya, Malang, Indonesia
1,3Department of Computer Science and Information Engineering, National Central University, Taoyuan City, Taiwan

Article Info ABSTRACT

Article history:

Received Dec 26, 2014
Revised Feb 9, 2015
Accepted Feb 20, 2015

 This paper proposes load-balancing algorithm on the basis of the Extended
Dijkstra’s shortest path algorithm for Software Defined Networking (SDN).
The Extended Dijkstra’s algorithm considers not only the edge weights, but
also the node weights to find the nearest server for a requesting client. The
proposed algorithm also considers the link load in order to avoid congestion.
We use Pyretic to implement the proposed algorithm and compare it with
related ones under the Abilene network topology with the Mininet emulation
tool. As shown by the comparisons, the proposed algorithm outperforms the
others in term of the network end-to-end latency, and throughput.

Keyword:

Dijkstra’s algorithm
Load-balancing
Shortest path
Software defined networking

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Widhi Yahya,
Department of Electrical Engineering,
University of Brawijaya,
Jl. Veteran, Malang 65145,East Java, Indonesia.
Email: widhi.yahya.ub@gmail.com

1. INTRODUCTION
The emergence of the SDN technology brings many new network applications realized by

programming the SDN controller. Typical examples include load-balancing, multimedia multicast, intrusion
detection, and so on. Load-balancing is an important concept in networking. The purpose of the load-
balancing application is to distribute the loads into multiple servers in order to get the best performance [1].
Online services, such as e-commerce, e-government, web sites, and social networks, often use multiple
servers to achieve reliability and high availability. Those service systems can use a load balancer in the front-
end to map requests from clients to servers. Using hardware load balancers can be a solution, but it suffers
from the expensive cost, and the rigid policy imposed by the vendor. The SDN technology enables users to
design their own flexible and cost-efficient load balancer that is suitable for their system.

Some load-balancing method using SDN technology are recently proposed. LABERIO [1] and
LOBUS [2] consider the path and link utilization as a method to optimize the system throughput. The other
method is the service-based load-balancing algorithm [3]. Service-based means consider the flow that related
to specific services. The purpose of the service-based load-balancing algorithm is specified resources
(switches, links, and servers) with particular services to increase reliability and availability of the system.
Both methods consider the path as the important thing in order to reach best performance, but maintaining the
path must be clearly defined. In this paper, we proposed load-balancing algorithm that is extended by shortest
path algorithm as a method to choose the best path.

In 2014, J.R. Jiang, et.al, extends the well-known Dijkstra’s shortest path algorithm [4] to consider
not only the edge weights, but also the node weights for a graph derived from the underlying SDN topology.
As shown by the simulation results in [4], the extended Dijkstra’s algorithm outperforms the Dijkstra’s
algorithm and the non-weighted Dijkstra’s algorithm under the Abilene network [5] in terms of end-to-end

IJECE ISSN: 2088-8708

The Extended Dijkstra’s-based Load Balancing for OpenFlow Network (Widhi Yahya)

290

latency. This is because the extended Dijkstra’s algorithm takes edge weights as transmission delays over
edges and takes node weights as process delays over nodes, while the other two algorithms consider only
edge weights or no weights.

In this paper, we propose a load-balancing algorithm for servers that are located and spread in wide
area SDN networks. In the SDN, the controller has a global view of the network topology. This information
can be processed to get the nearest servers by using a shortest path algorithm. In the proposed algorithm, we
can find the nearest servers from the clients by using the extended Dijkstra’s algorithm that can adapt to the
topology changes. We also consider the link load for congestion control. We use Pyretic [6] to implement
the proposed algorithm and compare it with the round-robin, the randomized load-balancing algorithm and
the LABERIO, under the Abilene network [5] topology with the Mininet [7] emulation tool. As shown by the
comparisons, the proposed algorithms outperform the others in term of the network end-to-end latency, and
the throughput.

The remainder of this paper is organized as follows. In Section 2, we introduce some preliminary
knowledge, including the SDN concept, load-balancing in SDN, and the extended Dijkstra’s algorithm.
Section 3 describes the load-balancing concept and the proposed algorithms. Section 4 shows the simulation
results and observations. Finally, this paper is concluded with Section 5.

2. PRELIMINARIES
2.1 SDN Load-Balancing

SDN advocates the separation of control and data planes (or layers), where underlying switching
hardware devices (called switches) are controlled via software entities (called applications) that runs on
external, decoupled automated control plane devices (called controllers) [8]. OpenFlow is one of the first
open protocols defined between the control plane device, the controller, and the dataplane device, the switch,
of the SDN architecture [8]. An OpenFlow switch consists of one or more flow tables and/or group tables, as
shown in Figure 2. An OpenFlow controller can update, add and delete flow entries in flow table both
reactively and proactively. Each flow table in the switch contains a set of flow entries, each of which consists
of match fields, counters, and set of instructions, as shown in Figure 3.

The SDN enables to design our own protocol on top of SDN switches. It is abolishing rigidity of
nowadays network. The intelligent of network administrator or researcher can easily put on the network
devices such as load-balancing methods.N. Handigol, et.al, [2] proposed the Plug-n-Serve system
implementing a load-balancing algorithm, called LOBUS (LOad-Balancing over UnStructure networks),
using OpenFlow for unstructured networks. LOBUS maintains the network topology and link status, and
greedily chooses the client-server pair that yields the lowest total response time for each newly arriving
request. M. Koerner and O. Kao [3] developed a load-balancing algorithm for handling multiple services
(called LBMS) by the SDN technology. It uses the FlowVisor, an SDN device to achieve network
virtualization, to coordinate multiple controllers, each of which handles requestsdestined for different
services. In 2013, H. Long, et.al, [1] proposed a load-balancing algorithm, named LABERIO (LoAd-
BalancEd Routing wIth OpenFlow), to minimize latency and response time and to maximize the network
throughput by better utilizing available resources.

Figure 1. The illustration of the SDN architecture [8]

Figure 2. The Open Flow controller and the
switch [9]

 ISSN: 2088-8708

IJECE Vol. 5, No. 2, April 2015 : 289 – 296

291

Figure 3. The flow table entry of the OpenFlow switch [10]

The algorithm uses ToR (Top of Rack) Switch-to-ToR Switch Paths Table (S2SPT) and Load Allocation
Table (LAT). However, maintaining S2SPT becomes a problem for the LABERIO, if the network topology
changes. So, the LABERIO is not suitable in wide area network network that has dynamic topology.

2.2 The Extended Dijkstra’s Algorithm

Given a weighted, directed graph G=(V, E) and a single source node s, the classical Dijkstra’s
algorithm can return a shortest path from the source node s to every other node, where V is the set of nodes
and E is the set of edges, each of which is associated with a non-negative weight (or length) [11]. In the
original Dijkstra’s algorithm, nodes are associated with no weight. The paper [4] shows how to extend the
original algorithm to consider both the edge weights and the node weights.

Figure 4 shows the extended Dijkstra’s algorithm, whose input is a given graph G=(V, E), the edge
weight setting ew, the node weight setting nw, and the single source node s. The extended algorithm uses d[u]
to store the distance of the current shortest path from the source node s to the destination node u, and uses
p[u] to store the previous node preceding u on the current shortest path. Initially, d[s]=0, d[u]=∞ for uV,
us, and p[u]=null for uV.

Extended Dijkstra’s Algorithm

Input:G=(V, E), ew, nw, s
Output:d[|V|], p[|V|]

1: d[s]←0; d[u]←∞, for each u≠s, uV
2: insertu with key d[u] into the priority queue Q, for each uV
3: while(Q)
4: u←Extract-Min(Q)
5: for each v adjacent to u
6: ifd[v]>d[u]+ew[u,v]+nw[u] then
7: d[v]←d[u]+ew[u,v]+nw[u]
8: p[v]←d[u]

Figure 4. The extended Dijkstra’s algorithm [4]

Note that the extended Dijkstra’s algorithm is similar to the original Dijkstra’s algorithm. The
difference is that the extended version adds the node weight in line 6 and line 7 of the algorithm. The original
Dijkstra’s algorithm cannot achieve the same result just by adding node weights into edge weights. This is
because the node weight should be considered only at the outgoing edge of an intermediate node on the path.
Adding node weights into edge weights implies that an extra node weight of the destination node is added
into the total weight of every shortest path, making the algorithm return the wrong result.

The extended Dijkstra’s algorithm is very useful in deriving the best routing path to send a packet
from a specific source node to another node (i.e., the destination node) for the SDN environment in which
significant latency occurs when the packet goes through intermediate nodes and edges (or links). Below, we
show how to define the edge weights and node weights so that the extended Dijkstra’s algorithm can be
applied to derive routing path for some specific SDN environment.

Assume that we can derive from the SDN topology a graph G=(V, E), which is weighted, directed,
and connected. For a node vV and an edge eE, let Flow(v) and Flow(e) denote the set of all the flows
passing through v and e, respectively, let Capability(v) be the capability of v (i.e., the number of bits that v
can process per second), and let Bandwidth(e) be the bandwidth of e (i.e., the number of bits that e can
transmit per second). The node weight nw[v] of v is defined according to Eq. (1), and the edge weight ew[e]
of e is defined according to Eq. (2).

IJECE ISSN: 2088-8708

The Extended Dijkstra’s-based Load Balancing for OpenFlow Network (Widhi Yahya)

292

ሿݒሾݓ݊ ൌ
∑ ሺ݂ሻ∈ி௪ሺ௩ሻݏݐ݅ܤ

ሻݒሺݕݐ݈ܾ݅݅ܽܽܥ
 (1)

where Bits(f) stands for the number of f’s bits processed by node v per second.

ሾ݁ሿݓ݁ ൌ 	
∑ ሺ݂∈ி௪ሺሻݏݐ݅ܤ ሻ

ሺ݁ሻ݄ݐ݀݅ݓ݀݊ܽܤ
 (2)

where Bits(f) stands for the number of f’s bits passing through edge e per second.

Note that we can easily obtain the number of a flow’s bits processed by a node or passing through
an edge with the help of the “counters field” of the OpenFlow switches’ flow tables. Also note that the
numerators in Eq. (1) and Eq. (2) are of the unit of “bits”, and the denominators are of the unit of “bits per
second”. Therefore, the node weight nw[v] and the edge weight ew[e] are of the unit of “seconds”. When we
accumulate all the node weights and all the edge weights along a path, we can obtain the end-to-end latency
from one end to the other end of the path.

3. PROPOSED LOAD-BALANCING ALGORITHM
The load balancer is placed in the front-end of the online services systems to map the request from

the clients to the servers. In the Linux virtual server (LVS) use Network Address Translation(NAT) to direct
traffic from the Internet to a variable number of servers on the second layer, which in turn provide the
necessary services. Service requests arriving at the LVS cluster are addressed to a virtual IP address or VIP.
VIP is can be a public IP address that associates with a fully-qualified domain name and which is assigned to
multiple servers [12].

Figure 5. Example Server Load-balancing Setup [13]

Figure 5 explains the server load-balancing architecture by using VIP. In this paper, we use VIP
address as IP public that will be accessed from the clients. Figure 5 is an example of a single point load
balancer architecture. In this paper, the load-balancing algorithm was implemented on the Abilene topology
that every switches in the topology act as a load balancer.

Using naive algorithms, such as the round robin algorithm and the randomized algorithm, in wide-
area-network load-balancing has the possibility to forward a request to the farthest server. This is not
efficient because the request and the replied data will go across the network and consume a lot of bandwidth
of the whole network. In SDN, the controller has the global information of the whole network, and can
decide to forward the request to the nearest server by finding the shortest path with the extended Dijkstra’s
algorithm from the client to a server, where the shortest path means the path with the smallest summation of
node weights and edge weights.

Figure 6 shows the proposed load-balancing algorithm. The basic idea is to forward each request to
the nearest server with the link load (utilization of the link between the server and the switch) lower than a
pre-specified threshold θ. However, if all the servers have link loads larger than the threshold, the algorithm
still chooses the nearest server. In this way, we can prevent congestion on the servers.

 ISSN: 2088-8708

IJECE Vol. 5, No. 2, April 2015 : 289 – 296

293

Proposed Load-Balancing Algorithm
Input:swsrc,Sdst,
Output: s, sSdst
P←eDijkstra(swsrc, Sdst)
forevery piP
ifpi.server.kl >then move pi from P to Q
ifP=then
 s ← min(P).server
else
 s ← min(Q).server
returns

Figure 6. Proposed Load-balancing Algorithm

We assume server si is attached to switch swi and a switch is attached with at most one server. Later
on, we use si and swi exchangabely for convenience. Given the source switch swsrc to which the request client
is attached, the set Sdst of servers, and a prespecified threshold , the proposed algorithm will return the best
server for load-balancing.

The link load kliof serve si (the utilization of the link <si, swi> between the server si and the switch
swi) is defined as follows:

݈݇ ൌ
݈݇݊݅	݂	݂݂ܿ݅ܽݎݐ	ݐ݊݁ݎݎݑܿ ൏ ,ݏ ݓݏ
݄ݐ݀݅ݓܾ݀݊ܽ	݉ݑ݉݅ݔܽ݉		 ݂ ൏ ,ݏ ݓݏ

 (3)

Since the proposed algorithm is based on the extended Dijkstra’s algorithm [4], we also take the

same mechanisms to obtain the node weights and the edge weights. Note that eDijkstra(swsrc, Sdst) will use
the extended Dijkstra’s algorithm to return a set P of shortest paths from the source switch swsrc, to every
server in the server set the Sdst,. Also note that pi.server stands for the server associated with the path pi, and
hence pi.server.kl stands for the link load of the server associated with the path pi. Furthermore, the function
min(P) will return the shortest one among all shortest paths in P.

4. SIMULATION
4.1. Simulation Setting

According to the Abilene core topology, we set up an OpenFlow controller and 11 Open Flow
switches as nodes, each of which was linked to the controller logically, as shown in Figure 7. For load-
balancing testing, we assumed there are two web servers that placed and spread in two different locations in
the Abilene network that will be accessed from clients.

Figure 7. Topology Used in Simulation

O i

Controller
OpenVswitch
Server
Client

IJECE ISSN: 2088-8708

The Extended Dijkstra’s-based Load Balancing for OpenFlow Network (Widhi Yahya)

294

The POX was used as OpenFlow controller. The load-balancing algorithm was implemented using
Pyretic. The VIP address was used as IP public that will be accessed from the Client.

Table 1. Simulation and Settings
Parameter Setting

Bandwidth on edges 1Gbps

Number of server 2

Number of switches 11

Number of edges 25

Controller POX 2.0 supporting Pyretic

Openflow Switch OpenVSwitch 1.0

Testing tool Iperf, Netperf

Testing time 30second

In the Figure 7, there are 2 servers and 12 clients in the Abilene topology. In this simulation testing,
we generated Transmission Control Protocol (TCP) data stream from the clients to the servers using Iperf. To
extend more information we also used the Netperf to generate request from clients. For every testing, we
defined the number of clients are 4, 8, and 12 clients. This simulation ran on AMD Phenom(tm) 9650 Quad-
Core Processor and 8GB of RAM. To prove the algorithm’s reliability, we compared it with the round robin
and randomized algorithms which have no consider the shortest path.

4.2. Simulation Result

In this experiment the request can happen in every switch in the topology that describe in the
simulation settings. The proposed algorithm chooses the best path (nearest server) for a requesting client by
using the extended Dijkstra’s algorithm. It is more convenient than maintaining the S2SPT and the LAT like
in the LABERIO. The LABERIO was designed for a data center that used term of Top-of-Rack switch to
maintain the paths. Since the different topology, in this experiment we use all switch to maintain the path for
the LABERIO. As shown in the Figure 8, the proposed algorithm outperforms the LABERIO in the term of
latency. It is quite similar because both algorithms consider the link capacity, but the superiority of the
proposed algorithm isalsoconsider the node capacity. We also compare the proposed algorithm with naive
algorithm, such as round-robin and randomized algorithm that do not consider the nearest server. The
simulation results show that the proposed algorithm is better than the two naive algorithms in the term of
end-to-end latency, as shown in Figure 8. The network end-to-end latency was measured by using the ping
tool to send 30 packets whose packet size is 65507 bytes from clients to the servers for 30 seconds. The
superiority is because the proposed algorithm considers the shortest paths (nearest server) and also the
congestion control. On the contrary, it is possible for the naive algorithms to forward requests to the far
server to go through some switches. In the real network, a high performance IP routers and switches add
approximately 200 microseconds of latency to the link due to packet processing. It means, if the request are
deflected to the farthest server to go through a lot of switches, the latency will increase significantly.

The throughput measurement and comparison was conducted to evaluate the capability of the
proposed algorithm. Throughput is the rate of successful message delivery over a communication channel. In
Figure 9, shows the proposed algorithm has higher throughput than the round robin,the randomized
algorithm, and the LABERIO. The round robin and randomized algorithm may deflect request to the far
server and even the link is congested. It causes the throughput is lower than the proposed algorithm.Consider
the node capacity derive the proposed has better throughput then the LABERIO.

As shown in the Figure 10, we use standard deviation to measure the server load variation. Standard
deviation measures the amount of variation or dispersion from the average. The load information is provided
by the Iperf server program. In this experiment, the proposed algorithm shows good result (smallest) in the
server’s load variation.

 ISSN: 2088-8708

IJECE Vol. 5, No. 2, April 2015 : 289 – 296

295

Figure 8. End-to-End Latency

Figure 9. Throughput

Figure 10. Standard Deviation Load of Servers

5. CONCLUSION
This paper proposes a load-balancing algorithm that takes advantage of the extended Dijkstra’s

shortest path algorithm. The extended Dijkstra’s shortest path algorithm was used to find the nearest server
for a requesting client. The extended Dijkstra’s algorithmconsiders not only the edge weights but also the
node weights for a graph derived from the underlying SDN topology. We use Pyretic to implement the
proposed load-balancing algorithm under the Abilene network topology with the Mininet emulation tool. The
simulation results show that the proposed load-balancing algorithm outperforms others in terms of the
network end-to-end latency, and throughput.

REFERENCES
[1] H. Long, Y. Shen*, M. Guo, and F. Tang. “LABERIO: Dynamic load-balanced routing in OpenFlow-enabled

networks”. IEEE 27th International Conference on Advanced Information Networking and Applications. 2013.
[2] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari. “Plug-n-Serve: Load-balancing web traffic

using Open Flow”. Demo at ACM SIGCOMM, Aug. 2009.
[3] M. Koerner and O. Kao. “Multiple Service Load-Balancing with Open Flow”. IEEE 13th International Conference

on High Performance Switching and Routing. 2012.
[4] J.R. Jiang, H.W. Huang, J.H. Liao, and S.Y. Chen. "Extending Dijkstra’s Shortest Path Algorithm for Software

Defined Networking". in Proc. of the 16th APNOMS. 2014.
[5] Abilene Network, http://en.wikipedia.org/wiki/Abilene_Network-#cite_note-line-1, last accessed on March 4, 2014.
[6] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular SDN Programming with Pyretic”. Technical

Reprot of USENIX, available athttp://www.usenix.org, 2013.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

2.1

4 8 12

M
ill
is
e
co
n
d
s

Number of Clients

Proposed Round Robin

Randomized LABERIO

570

620

670

720

4 8 12

M
b
p
s

Number of Clients

Proposed
Round Robin
Randomized

0

0.5

1

1.5

2

2.5

4 8 12

Number of Clients

Proposed Round Robin

Randomized LABERIO

IJECE ISSN: 2088-8708

The Extended Dijkstra’s-based Load Balancing for OpenFlow Network (Widhi Yahya)

296

[7] Mininet Website, http://mininet.org/, last accessed on May 2014.
[8] Open Network Foundation (ONF) Website (SDN white paper), https://www.opennetworking.org/sdn-resources/sdn-

definition, last accessed on January 2014.
[9] Open Networking Foundation. “OpenFlow Switch Specification version 1.4.0”. October 14, 2013.

[10] N. McKeown, et. al. “Open Flow: Enabling Innovation in Campus Networks”. ACM SIGCOMM Computer
Communication. 2008.

[11] E. Dijkstra, “A note on two problems in connexion with graphs”. Numerische mathematik. vol. 1, no.1, 1959, pp.
269-271.

[12] Red Hat, Inc. “Linux Virtual Server Administration: RHEL5: Linux Virtual Server (LVS)”. 2007.Doc
[13] Wiki Cisco,

http://docwiki.cisco.com/wiki/Cisco_ACE_4700_Series_Appliance_Quick_Start_Guide,_Release_A3(1.0)_--
_Configuring_Server_Load_Balancing, last accessed on june 2014.

BIOGRAPHIES OF AUTHORS

Widhi Yahya received the Master Science degree in Department of Computer Science and
Information Engineering, National Central University, Taiwan in 2014 as an International Dual
Degree Master student between University of Brawijaya and National Central University. He got
Bachelor degree in Department of Informatics Engineering, University of Brawijaya, Indonesia.
His research interest area is in the computer science and information technology areas, especially
in network programming.

Achmad Basuki is a senior lecturer in Department of Electrical Engineering, University of
Brawijaya, Indonesia. He is expert in computer networking research area, especially in IP
multicast,P2P, CDN, data center, and networking. He got Ph. D. degree from KEIO University,
Japan. He presently work in PTIK, University of Brawijaya, Indonesia as a Chairman of the
PTIK UB.

Jehn-Ruey Jiang received his Ph. D. degree in Computer Science in 1995 from National Tsing-
Hua University, Taiwan, R.O.C. He joined Chung-Yuan Christian University as an Associate
Professor in 1995. He joined Hsuan-Chuang University in 1998 and became a full Professor in
2004. He is currently with the Department of Computer Science and Information Engineering,
National Central University, and co-leads the Adaptive Computing and Networking (ACN)
Laboratory, which aims at developing adaptive mechanisms for collaborative computing entities
to make proper adjustments according to their current understandings about the computing
environments or resources, in order to efficiently perform given tasks.

