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1. INTRODUCTION

During the last decades, the problem of unknown input filtering has received growing attention due
to its applications in environmental state estimation [1], [2]. The unknown input filtering problem has treated
in the literature by different approaches. The first approach assumes that the model for dynamical evolution
of the unknown input is available. When the properties of the unknown input are known, the augmented state
Kalman filter (ASKF) is a solution. To reduce computation costs of the ASKF, Friedland [2] proposed the
two stage Kalman filter where the estimation of the state and unknown input are decoupled. The second
approach treats the case when not have a prior knowledge about the dynamical evolution for the unknown
input. Kitanidis [1] was the first to solve the problem using the linear unbiased minimum-variance. Darouach
et al, [3] extend Kitanidis’s filter using a paramaterizing technique to obtain an optimal filter (OEF). Hsieh
[4] has developed an equivalent to Kitanidis’s filter noted by robust-two stage Kalman filter (RTSKF). Later,
Hsieh [5] developed an optimal minimum variance filter (OMVF) to solve the performance of degradation
problem encountered in (OEF). Gillijns & De Moor [6] has treated the problem to estimate the state in the
presence of unknown input which affects only the systems model. They developed a recursive filter which is
optimal in the sense of minimum-variance. This filter has been extended by the same authors [7] for joint
input and state estimation to linear discrete-time systems with direct feedthrough where the state and the
unknown input estimation are interconnected. This filter is called recursive three step filter (RTSF) and is
limited to direct feedthrough matrix has full rank. Cheng et al, [8] proposed a recursive optimal filter with
global optimality in the sense of unbiased minimum-variance over all unbiased estimators, but this filter is
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limited to estimate the state. Recently, the case of an arbitrary rank has been solved by Hsieh (2009) in the
designed optimal filter [9], known as ERTSF (Extend RTSF). Other methods are proposed by Gillijns and
Bart de Moor in [10], [11] and [12] which use least -squares (LS) technique and the information formulas.

In this paper, we present an unbiased minimum-variance estimation of the state and the unknown
input. These estimates are obtained by solving the information formulas using the weighted least-squares
method. The advantage of this method is to provide a direct estimate of the state and unknown input in a
single block with a simple calculation.

The paper is organized as follow. Section 2, presents the problem under consideration and some
preliminaries. In section 3, we set up the design of the filter equation by recursively solving the weighted
least-squares problem. An illustrative example is presented in section 4. Finally, in section 5 we conclude our
obtained results.

2. PROBLEM AND PRELEMINARIES

2.1 Problem Formulation
Consider the linear stochastic discrete-time system with unknown input in the following form:

Xe+1 = AXi t Gidy + wye 1)

Yk = Cyxy + Hyedy + v )

where x T A" is the state vector, d, T A™ is the unknown input vector and y, T AP is the measurement
vector. The process noise w, T A" and the measurement noise v 1 AP are assumed to be mutually

uncorrelated zeros-mean white random signals with non singular covariance matrices Q, = %\kWI lék 0 and

R, = Eé/kvlé&o respectively. The matrices A.,G, C, and H, are known and have appropriate
dimension. We assume that (A, Cy ) is observable, p>m and the initial state is uncorrelated with the white
noises processes wg and vi. The initial state x; is a Gaussian random variable with E[x0]=§<0,

E[%—%)%—%)T}:Fb where E[.]denotes the expectation operator. Also, we assume that

rank (Cy Gy _1 ) = rank (Gy_; ) , the direct feedthrough matrix Hy has an arbitrary rank .
The objective of this paper is to design an optimal recursive filter wich estimates both the system state x, and
the unknown input dy based on the initial estimate %, and the sequence of measurement{yg, yy,..., Y } . No

prior knowledge about the dynamical evolution of d| is assumes to be available. Now we derive a Recursive

Least Square (RLS) procedure that propagates a one step ahead predicted state estimate. For simplicity of
derivations, we use a stochastic approach .We assume that an estimate X,,_; is available with covariance

matrix de_l:E[(xk—%(,k_l)(&—%(,k_l)q and we seek for a weighted least square (WLS) that allows to

estimate X, based on X, and the newly available measurement y, .
The error estimation %, 1 is given by:

ik-1= % Resk-1- ®)

Using (1), (2) and (3), we obtain the following equation:

Xea| [ 0 Off % X /k-1
Yo |=|Ck Hk Of de [+] v | 4
0 Ac Gk =1y J[ Xes1 W
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So, the corresponding WLS problem is given by

2

X | |10 0 %
min Yo |— Ck Hk 0 dk (5)
Koo X 0 Ac G =1y ]| X%n w,

where 7 denotes the weighting matrix.
From (5) the interpretation of an MVVU (Unbiased Minimum-Variance) estimator is obtained by choosing
wj = diag (Pk‘,}(,l, Rk‘l,Qk‘l) . The proposed solution of the LS problem (5) is given in the following form:

ik = My (Y —CiXesea) (6)
Kk = Xerkes + Ky (Yk = Ci Xirk—1 — Hi Ay k) )
Xk = ARk + Gk ®)

Where the gain matrices 9, € R™P and K, e R™Pstill have to be determined later.

2.2 Preliminaries
The following lemmas are essential for later developments.
Lemma A.1 (The matrix inversion lemma [11]):

LetAeR™" BeR™™, CeR™"and DeR™™ be real matrices. IfA,D-CA 1B and Dare non-
-1 -1
singular, then A— BDIC is non-singular, and (A— BD‘1C) =A1+ A_lB( D —CA‘IB) cA L

The following formula provides a manner to invert a 2x 2 block matrix based on the matrix inversion

A BTL (A— BD_lc)_l 0 | _pp
lemma, { } = 5 [ ., }
CD 0 (D_CA—lB) —cAl |

Indeed, the diagonal entries of the first matrix on the right hand side of the equality sign can be computed
using the matrix inversion lemma.
Lemma A.2:

Let Ac R™", Be R™Mand C e R™™ be real matrices. If A C are non-singular then,

AB (c +BT AB)71 - (A‘1 +BC 1T )71 BCL.

3. FILTER DESIGN

The calculation of the optimal matrices %, and K is addressed in the subsection 3.1 which call the
measurement update, yields an estimate of x, and unknown inputd, . The time update of the state
estimation is presented in subsection 3.2.

3.1. Measurement Update
The measurement update is derived from (5) by extracting the rows that depend only on x, andd, .

This yield,
R 2
e wa]
Yk Ck HiJldk

min ©)
xk’dk

Wik
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Where v/, ; = diag (Pk‘,}(,l, Rk‘l) denotes the weighting matrix.

Now we derive an explicit update formula by solving the problem state and unknown input
estimations. Firstly, note that (9) is equivalent to the least-squares problem

2
min ¥z - A4z X 10
min [ - A [, (10)
Where
| 0 )A(k/kl}
A = y Ve = '
¢ {Ck HJ ¢ { Yk
Xk . _ —
X :{d } and Wy =diag (R, Rjk-1) (11)
k
Using the Gauss-Markov theorem [13], the solution is written as:

~ -1
Xy = (ﬂg Wz,&ﬂ&) AL Wag Yy (12)
-1
Using (11) the covariance matrix( ﬂg Wak ﬂ@) follows as

o v [RdardlRG oIRIH T
(ﬂﬁ\ WZ’@’%) Tl T -1 (13)
Hy R "Gy Hy R Hy

In the next section we will determinate an unbiased estimate of the state and unknown input by seeking a
solution to the equation (13).
Lemma 3.1:

The expression of the error covariance matrix Pkd,k is given by:

RJk :(Hgﬁk_lHk)_li (14)

and the error covariance matrix of the state is given in the following form :

Rak = F1</|<—1—Kk('§k —HkﬁngE)Kg (15)
where

Re = CiFkaCr +Re (16)

Ky = RekaCk R 17
Proof:

Note that, B and Pkd,k can be identified as error covariance matrices of X, and ak,k , that is,
o T
Pak = E[Xk/k R/ J

Rk =E [dk/k dg/k } :
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Where the inverse of B and Pkd,k are given, respectively, by

-1 -1 To-1 T -1 1, L
Rk :(H</k—1+ck Ry Ck)_ck R " Hi (H R Hy)

(18)
xH} Rl
-1
d Tp-1 Tp-1
(Pk/k) :(Hk Ry Hk)_Hk Rk "Ck
. (19)
-1 Tp-1~ \ " ~Tp-1
X(Pk/k—l"'ck Ry Ck) Ci R Hy-
Then, by applying lemma A.1 the equation (13) is rewritten as follows:
-1
Pkl RIC TR |1 [k 0
Hy R 'Cy HT R H 0 Rk
(20)

-1
Tpo-1 To-1
| ~C{ R Hy (HI R Hy )
X

-1
T o1 -1 T -1
—Hy Ry Ck(Pk/k—1+Ck Ry CK) |

Applying the matrix inversion lemma A.1 to the information formulas (18) and (19), the error covariance
matrix Pkd,k and B are given in the following forms:

d (HERQlHk)—H;Rilck(H&i—ﬁcERka)& N

Ik = (21)
xCp R tHy
:(HIRk’lHk)A +(HE kalHk)f1 Hi R 'Cy
1 -1
{(Hﬁeﬁrc{ Re'Cc )Gl R Hic (Hi R Hi ) HERe'e } 22)
To1~ (WTply |7
XCL ROy (HEReMHy )
1 T\ T
= Hy (Rk +Cy Rerk-1Cx )Hk (23)
Ta-1, \ L
= (Hg Re*Hy ) (24)
5 d LT\ kT
Pk = Rork-1 = Ky (Rk = HiRakHk )Kk (25)
(Rok-1+CiR'C) h
e = T -1 1y \-1yTp-1 (20)
= C R Hi (HiR " H ) " H RTCy
= R+ RCE R Hy,
- A s ~Toly Yl Tods = (27)
x(H{ Rc'Hi — HERCCRCTRCH ) HERC R
= R +RC R HRIHI R R (28)
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= Rk — KiReKE + KiH RGHE KE (29)
where

=Rk +ClRC ) (30)

ACh R = RkaCk R (31)

CiPlk = Ry (32)

The gain matrix K, that minimize the error covariance is given by

Kk = Plk-1Ck Ric - (33)

Setting the Derivate of (25) with respect to K, , we get

0 .
M:RkKII"'HkPkd/kHIKE (34)
oKy
Let replace the Pkd,k by equation (14), we notice that aaPkT/k =0, therefore the gain K, minimize the trace of
k

the matrix covariance By .

Lemma 3.2:
An unbiased estimate of the unknown input d,, can be obtained in the following form:

dik =My (Yk —CiKkk-1) (35)
where

M = A HE R (36)
We consider the minimum-variance unbiased state estimation X, given in the following form:

Kk = Xerker + Ky (Yk = C X — Hidy k) (37)

Proof:
The equation (12) can be written as follows

. B B B -1
{Xk/k } _ [Pk/]k—l +C{ R 'Cx Cy ReHy ]

dex ] | HIRCIC, HTRH,
-1 To1l |re (38)
| Pk Gk Ry {Xk/k—l}
0 He R L Yk
Substituting (20) in (38), we obtain
~ 1 A
Xk = Pk Fork-1Xk/k-1 (39)
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+(Pk,kCE Rk_l - Pk,kCI Rk_lHk x(HI Rk_lHk)_lHE R[l) Yk, and estimation of unknown input is given in the
following form:
a d Tl d T o -1 T -1~ y-1
e = R H RV — R HE R G (Rl + G RG) (40)
-1 To-1
* (A1 + G R Y)-

Let us apply the lemma A.1 and A.3 to the equation (39) and (40), the estimate of the unknown input is given
by:

: d LT p-1 d uTp-1
di/k = Rk Hi R Y = Bak Hi R Cy

(41)
-1 T o1~ \-1/p-1 o T o1
x(Re/k-1+Ck R "C )~ (PrcZaXiesk— + Ci Ric ™Yk )-
where
d uTp-1 -1 To-1~ \-1p-1 o
RokHi R Cr (R + Cx R Cr ) Rejk-1Xi/k—1 @)
T 5-1 T5-1~ o
:(Hk Ry Hk)Hk R "Cre Xk
1
d uTlo1 pi~ (o1 Tl To-1
R Hi [Rk —Re Ck(Hdk—l"'Ck R Ck) Ci Re }Yk
. (43)
d T T\~
=R Hy (Rk +CyRokaCx ) Yk -
- T 5-1 T 5-1 .
dk/k:(Hk Ry Hk)Hk R (Y = Cicur1) (44)

Remark 3.1: to evaluate the performance of the filter in case where Hy has an arbitrary rank we use the
heuristic extension presented in [9] by replacing equation (14) and (36) by:

d 4T-1 pd T5-1
My =B He Re™ H(/k:(Hk Ry Hk)T (45)

T

where ' the Moor-Penrose is generalized inverse
-1
Mt = (M ™ ) MT

The state estimation X is given in the following form:

~ 1 A
Xk = Rox ok Xk—1 +

T -1 To-1 T o1y 1T p-1 (46)
(Hdka Ric™ Ao Cic R Hic(Hi RiTHI ) Hic R )Yk
Using the inversion lemma A.1 and A.3 we can show that:
TRt = R — crR1c, %
Bk Bok—1%irk—1 = Xerk—1 — Fok—1Ck R "Ci Xk 47)
T 5-1 Ta-1y \1yTH-1~ o
+Bok—1Cx R Hi (Hy R H ) Hi R Cie Xk
T(p-1 p-1 T o1y 14T p-1
RokCr (Rk —RH (Hy ReHK ) " Hy Ry )Yk
Ts-1 T 5-1 T5-11y \-1
= Bei-1C« R Yk — Ruk-1C R Hi (Hi ReHy) (48)

xH Ry
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~ ~ Ta-1~ A
Xk = Xkt — Fek-1Cx R CXigri—
T 5-1 T5-11y 14T -1~ o
+BokaCr R H (He R HE ) Hy ReCie X

. - - (49)
T 5-1 T5-1 Ta-1, \-1
+Rek-1C Rk = Aoka1Cr R Hi (Hg Re™Hy)
xHy Rty
. T5-1~ o T5-1
Xerk = (' = Rok-1Ci R Cr ) Xerk-+ Berk1C Ric Yk (50)
T5-1 Ta-1 \-1yT3-1 o
~RerkaCi Ric Hic(Hi RiTHI) ™ Hi R (Vi = CiRier)
3.2. Time Update
Firstly, we extract from (4) the equation that depends on X1 .
Xii1 = A Xy + Gy +w (51)

Second substituting x, and dy for their LS estimates X, and &k,k obtained during the measurement
update (41) and (50). Then, we obtain

Ak * Gl = Xee1- (A + G + wi) (52)
The corresponding LS problem is given by
min||X.1 — ARk — Gidl
“ k+1 ~ AcXik — B k“wﬂ (53)

Where w/; . denotes the weighting matrix which we choose

Wi =(E|:(Ak)~‘k/k + G+ ) Ao G +V\{<)T D_l (54)
From equation (53)

Rtk = Ak + Grdi (55)
The error estimation X4 is given by

K1k = Xk — Xk (56)

= ARy sk + Gk + Wi (57)

In consequence, the covariance matrix of X1/ is given by:

Rk = E[Xkﬂ/k XI+1/|<} (58)
Rk Rk || A

“[A G +Q 59

| ”[Pk% Pkd,k"e;] k “

It follows from (35) that d, . is given by:
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diic = (1 = MicHi ) die = My (CieKipn +Vic) (60)
T
d o
RSk —(H<X/k) = E[ R |-
Using (56) and (60), it follows that

d d
Rk = —KiHi Rdk (61)

4. ILLUSTRATIVE EXAMPLE

To show the proposed results, the numerical example given by Darouach, Zasadzinki and Boutayeb
(2003) is considered, where the parameters of systems (1) and (2) are given as follows, the parameters of the
system (1) and (2) are given by:

_[-0.0005 000841 _ 1 0
| 00517 08069 | K |0 1|’
00129 0 0.0036 0.0342 001 0
Gy = L Q= Ry = .
~1.2504 0 0.0342 0.3249 0 016

Without loss of generality, the initial state and its estimate are both assumed to be zero, and the initial
covariance is given by Py = diag (10,200). The unknown input are given by

gus[k} 5u [k- 20+ 5ug [k - 70]j
~ u kT 4ugk- 301 dug k- 65K

where ug [k] s the unit-step function. In this example, we assume that the simulation time is 100 time step.

10 10 10
Hi = HZ = and HE =
0 0], 10 0 1

Case 1: Hy = H&

1st denet o stae

2ddenet o stae

Figure 1. Actual and estimated value of the state
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Figure 3. Actual and estimated value of the state

Figure 2. Actual and estimated value of the input

Case 2: Hy = Hf

Figure 4. Actual and estimated value of the input
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Case 3: Hy = H

actual

- estimated

1st demert of state

2nd dement of state

1st dement of state

2nd dement of inpue

Figure 6. Actual and estimated value of the input

Table 1. Performance of the proposed filter
Hi RMSE Trace P

o %2 di dZ  trach’  trach?
Hi  oost o161 o024 - 0430 00135
HE  ooss 0084 0120 4000 0459 00136
HS  oort o014 o018 0123 1014 11847

T T
In table 1, the root square errors (RMSE) of the state x =[xﬁ XE] and the inputs dj =[d|% df] are

given as well as the traces of their steady-input and state estimation error covariance. For example the RMSE
of the first component of sate vector is calculated by

N
RMSE(f(l,k)=\/ﬁ > (k- ik )

In figures 1, 3 and 5 we plot that actual and the estimated value of the two element of the state vector

1 2
xk:[xk xk} in the three cases.
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In figures 2, 4 and 6 we plot that actual and the estimated value of the two elements of the first and second

T
element of the input vector d, :[dﬁ dkz} in the three cases.

According to Tablel, Figures 1, 2, 3, 4, 5 and 6 we may conclude the following results:
If the direct feedthrough matrix has full rank H,=H,® then the proposed filter (RLSF) guarantees an estimate
with a small value (RMSE) for the two components of the two vectors of state and unknown input.

5. CONCLUSION

In this paper, the recursive filter design for systems with unknown input via the least-squares
technique is proposed. The obtained recursive filter is named RLSF. This solution is based on the technique
least square when the direct feedthrough matrix of the unknown input has an arbitrary rank. An application of
the proposed filter has been shown by an illustrative example. This filter may be used in resolving Fault
Detection and Isolation.
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