
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 4, August 2015, pp. 821~831
ISSN: 2088-8708  821

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

A Study on Efficient Design of a Multimedia Conversion
Module in PESMS for Social Media Services

Jongjin Jung1, Myoungjin Kim2, Hanku Lee3
1Korea Electronics Technology Institute, Center for Social Media Cloud Computing, Konkuk University, South Korea

2,3Center for Social Media Cloud Computing, Konkuk University, South Korea
Email: mozzalt@keti.re.kr1, tough105@konkuk.ac.kr2, hlee@konkuk.ac.kr3

Article Info ABSTRACT

Article history:

Received Jun 12, 2015
Revised Aug 20, 2015
Accepted Aug 26, 2015

 The main contribution of this paper is to present the Platform-as-a-Service
(PaaS) Environment for Social Multimedia Service (PESMS), derived from
the Social Media Cloud Computing Service Environment. The main role of
our PESMS is to support the development of social networking services that
include audio, image, and video formats. In this paper, we focus in particular
on the design and implementation of PESMS, including the transcoding
function for processing large amounts of social media in a parallel and
distributed manner. PESMS is designed to improve the quality and speed of
multimedia conversions by incorporating a multimedia conversion module
based on Hadoop, consisting of Hadoop Distributed File System for storing
large quantities of social data and MapReduce for distributed parallel
processing of these data. In this way, our PESMS has the prospect of
exponentially reducing the encoding time for transcoding large numbers of
image files into specific formats. To test system performance for the
transcoding function, we measured the image transcoding time under a
variety of experimental conditions. Based on experiments performed on a 28-
node cluster, we found that our system delivered excellent performance in
the image transcoding function.

Keyword:

PESMS
Image Conversion
MapReduce
Hadoop
Media Transcoding

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Jongjin Jung and Hanku Lee
Smart Media Research Center, Korea Electronics Technology Institute, and
Center for Social Media Cloud Computing, Konkuk University
Jong Jin, Jung Seoul, South Korea
Email: mozzalt@keti.re.kr

1. INTRODUCTION

Today, nearly everyone uses smart devices such as smart phones, tablet computers, and smart TVs.
In addition, they use social networking service (SNS) applications that enable them to take high quality
pictures, record videos, and upload and download them. These images and videos have high resolution;
therefore, the files are quite large. Users also want seamless, real-time service; furthermore, they want all
multimedia services to be independent of the platform operating system (OS), the display device resolution,
and so on. In order to meet these requirements, the development environments of SNSs need to be supported
with larger storage systems, a larger database system, more elastic computing resources, and data processing
techniques for numerous multimedia devices. Service providers (SPs) must provide increasingly massive
storage spaces to support the volume of social media created daily by users. SPs must also install more
powerful hardware, only to have to change it again some time later. To handle the range of user device types,
SPs must have all kinds of multimedia. However, this may not be the best solution.

This paper proposes the Platform-as-a-Service (PaaS) Environment for Social Multimedia Service
(PESMS), which was derived as a PaaS model of the Social Media Cloud Computing Service Environment
(SMCCSE) [1], [2]. The main objective of PESMS is to support development environments for developing or

  ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 821 – 831

822

implementing social media services [3], [4], [5], [6] using cloud computing techniques and elastic computing
resources in a cloud computing environment. In this study, we focused on the implementation of PESMS. We
designed and implemented partially functional social media modules for converting images into JPEG, GIF,
PNG, BMP, TIFF, and other formats and modules for resizing images using PESMS.

2. RELATED WORKS
Cloud computing: Cloud computing technology has already become a popular service for efficient

system maintenance, thin-client devices, powerful software services and other applications. According to the
National Institute of Standards and Technology (NIST), cloud computing is defined as “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction” [7]. Thus, the developer, the system manager, or
a common user can easily use the platform or service without the need for complex installation and
associated major constraints of time, place, and occasion.

Social-media-service model using cloud computing: Social media–based social networking
services (SNSs) have also become popular. Most people use one or more social service applications, and they
want elastic social media service. People share their news, photographs, and multimedia with social media
services, and they want to enjoy high-quality multimedia and high-speed service. Furthermore, because
people have different devices, several versions are needed, even though the content is the same. More
specifically, there may be different versions of the same content that differ in resolution, quality (e.g.,
thumbnail or mobile phone version), or codec. For example, it is known that Facebook had 70 billion images
in 2012. To find the most appropriate content and deliver it to the user (or more precisely, the user’s device),
accurate information about each multimedia object is very important. To obtain this information, social
multimedia retrieval tools (to extract features such as color, texture, and histogram) could be required. To
address these issues, the system or platform for a social media service must have more powerful computing
equipment. However, some time later, as more and more people use social media services, more multimedia
data will be generated, thus necessitating more storage, larger database systems, and much speedier networks.
As a result, the trend is for many service providers to implement social media services with cloud computing.

Hadoop: Hadoop, developed by Apache, is an open source software project. It enables distributed
processing of large data sets across clusters of commodity servers [8]. It is designed to scale up from a single
server to thousands of machines, with very high degree of fault tolerance. Rather than relying on high-end
hardware, the resiliency of these clusters comes from the software’s ability to detect and handle failures at the
application layer. Thus, it is useful for data-intensive distributed applications, which are capable of handling
thousands of nodes and petabytes of data. Hadoop changes the economics and the dynamics of large-scale
computing. Its impact can be summarized in four notable characteristics, listed in Table 1. These four
characteristics enable computing solutions that are scalable, cost effective, flexible, and fault tolerant.

Table 1. Characteristics of Hadoop
Characteristic Description

Scalability
A cluster can be expanded by adding new servers or resources without having to move,
reformat, or change the dependent analytic workflows or applications.

Cost-effectiveness
Hadoop brings massively parallel computing to commodity servers. The result is a
sizeable decrease in the cost per terabyte of storage, which in turn makes it affordable
to model all your data.

Flexibility
Hadoop is schema-less and can absorb any type of data, structured or not, from any
number of sources. Data from multiple sources can be joined and aggregated in
arbitrary ways enabling deeper analyses than any one system can provide.

Fault tolerance
When you lose a node, the system redirects work to another location of the data and
continues processing without missing a beat.

Hadoop has four main components: Hadoop Common, Hadoop Distributed File System (HDFS),

MapReduce, and “Yet Another Resource Negotiator” (YARN). These are explained in Table 2.
Two of these components, Hadoop Distributed File System (HDFS) and MapReduce, are utilized in

PESMS. As mentioned previously, Hadoop has scalability. MapReduce is the heart of Hadoop, and it is this
programming paradigm that allows for massive scalability across hundreds or thousands of servers in a
Hadoop cluster. The MapReduce framework provides a specific programming model and a runtime system
for processing and creating large data sets that are suitable for various real-world tasks [9]. This framework
also handles automatic scheduling, communication, and synchronization during the processing of huge data

IJECE ISSN: 2088-8708 

A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social … (Jongjin Jung)

823

sets, and it has a fault tolerance capacity. The MapReduce programming model is executed in two main steps,
called mapping and reducing, performed by the mapper and reducer functions, respectively. Each phase
requires a list of key and value pairs as the input and output. In the mapping step, MapReduce receives the
input data set and feeds each data element to the mapper in the form of key and value pairs. In the reducing
step, all of the outputs from the mapper are processed, and the final result is generated by the reducer using
the merging process. The HDFS component further contributes to Hadoop’s scalability. All data in Hadoop
are configured with HDFS; data in a Hadoop cluster are broken down into smaller pieces (called blocks) and
distributed throughout the cluster. In this way, the mapping and reducing functions can be executed on
smaller subsets of the user’s larger data sets, and this provides the scalability that is needed for processing of
big data.

Table 2. The Four Core Components of Hadoop Architecture
Core Component Description

Hadoop Common A module containing the utilities that support the other Hadoop components.
Hadoop
Distributed File
System (HDFS)

A file system that provides reliable data storage and access across all the nodes in a
Hadoop cluster. It links together the file systems on many local nodes to create a single
file system.

MapReduce
A framework for writing applications that process large amounts of structured and
unstructured data in parallel across a cluster of thousands of machines, in a reliable,
fault-tolerant manner.

Yet Another
Resource
Negotiator
(YARN)

The next-generation MapReduce, which assigns CPU, memory and storage to
applications running on a Hadoop cluster. It enables application frameworks other than
MapReduce to run on Hadoop, opening up a wealth of possibilities.

3. SMCCSE (SOCIAL MEDIA CLOUD COMPUTING SERVICE ENVIRONMENT)

SMCCSE is a development environment with which an SP can easily develop or implement cloud-
based social media services [5] [10][11]. It provides an environment for supporting the development of SNSs,
addressing numerous SNSs and providing more effective algorithms for processing high volumes of social
media data and a set of mechanisms to manage the entire infrastructure [1], [2]. It is composed of four layers:
the social media applications layer, the social service software library layer, the distributed social data
processing layer, and the cloud virtualization platform layer. Figure 1 shows the SMCCSE architecture.

Figure 1. The architecture of the Social Media Cloud Computing Service Environment (SMCCSE)

  ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 821 – 831

824

In the social media applications layer, many social applications (SNS, multimedia, games, and so on)
can be developed using modules of the layer below, which is the social service software library. This layer
has a software development kit (SDK) and many APIs, functions that are provided to the developer or SP as a
form of software as a service (SaaS) for developing the various social media applications. In the distributed
social data processing layer, many module-related distributed social data processes are provided as a form of
PaaS [12]. In the cloud virtualization platform layer, huge hardware equipment is provided as a virtualized
platform as a form of infrastructure as a service (IaaS).

4. PESMS (PAAS ENVIRONMENT FOR SOCIAL MULTIMEDIA SERVICE)

As mentioned in the Introduction, PESMS is a PaaS model of SMCCSE. PESMS is composed of a
social media data analysis platform (social common algorithms library), a cloud distributed and data
processing platform, and a cloud infra management platform, as shown in Figure 2.

Figure 2. The architecture of the Platform-as-a-Service (PaaS) Environment for Social Multimedia Service
(PESMS)

Social media data analysis platform: The main role of the social media data analysis platform is to

analyze usage patterns and relationships between the users and the social media data they demand and to
provide encoding, decoding, transcoding, and transmoding functions in a library form. Transcoding is the
conversion of a media file into file types suitable for numerous digital devices, and transmoding is the
conversion of a media file into multiple files of more suitable sizes.

Cloud distributed and parallel data processing platform: This is a core part of PESMS. It can
store, distribute, and process social media data created by users by applying HDFS, MapReduce, and a
Hadoop database system (HBase) [13][14][15]. The social media data are delivered to various user devices
such as mobile phones, smart pads, PCs, and TVs. The distributed and parallel data processing system has
two subsystems: a distributed data system and a distributed parallel processing system. In the first, HDFS is
adopted for a distributed social multimedia data system. In the second, MapReduce is adopted for a
distributed parallel programming model. All functions of this platform are performed by social media
common algorithms from the libraries in the social media data analysis platform [16][17]. The generated
social media data (text, images, audio, and video) and database are stored in HDFS or HBase. Then, the
stored data are processed in two steps using MapReduce.

Cloud infra management platform: The cloud infra management platform involves the concepts
of cloud quality of service (QoS) and a green Internet data center (IDC), and it is used to manage and monitor
computing resources that do not depend on a specific OS or platform. It includes resource scheduling,

IJECE ISSN: 2088-8708 

A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social … (Jongjin Jung)

825

resource information management, resource monitoring, and virtual machine management. These functions
are provided on Web services based on Eucalyptus. In addition, our IaaS is designed to offer flexible
computing resources including servers, storage, and bandwidth using virtualization techniques based on Xen
[18].

The most important function of PESMS is image and video conversion via transcoding and
transmoding; by this means, large volumes of social media objects created by SNS users are efficiently
transmitted to end-user devices. To accomplish this, we designed and implemented a partially functional
image conversion module based on Hadoop. Figure 3 shows the architecture of the image conversion module.
The transcoding and transmoding of images using Hadoop is as follows. First, user-created images are
automatically distributed and stored in each node running on HDFS [19], [20]. Next, batch processing by
MapReduce converts images stored in HDFS to appreciate another images. Our conversion module uses only
a map step because it is not necessary to conduct a merging process for the results from the reduce step [21].
The map function is implemented by the SequenceFiles method in the map phase; this is used to input the file
names and the file contents themselves as the keys and values, respectively, in a set of intermediate key/value
pairs. Then, the image conversion module sets the file contents into byte type using a BytesWritable class.
Finally, image data sets are processed in parallel in each node. Figure 4 shows the programming elements of
the image conversion module and the implementation of the proposed module.

Figure 3. Image Conversion Module using PESMS

Figure 4. Programming Elements of the Image Conversion Module

The steps used for programming these processes are as follows. First, the conversion module reads
image data in HDFS using the RecordReader method of the InputFormat class. InputFormat transforms the
image data into sets of keys (file names) and values (bytes). Second, InputFormat passes the sets of keys and

  ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 821 – 831

826

values to the Mapper class. Mapper processes the image data using the user-defined settings and methods for
image conversion via the JAI library. Then, the conversion module converts the image data into specific
formats suitable for a variety of devices such as smart phones and tabular and personal computers in a fully
distributed manner. Mapper completes the image conversion and passes the results to the OutputFormat class
as the key (file name) and value (bytes). Finally, Mapper passes the key and value set to OutputFormat. The
RecordWriter method of the OutputFormat class writes the result as a file for HDFS.

5. SIMPLE USE CASE OF PESMS
An example of a simple social media service with PESMS is shown in Figure 5. The flow is as

follows.

Figure 5. Simple use case of social media service using PESMS

1. SNS users create and upload their social content.

2. This content is stored in the distributed data system using social media APIs. Content is then processed
and classified in order to be found efficiently by a user search pattern and be available to recommend to
users as appropriate.

3. Classified content is conducted to distributed and parallel processors by MapReduce in order to deliver to
other users in the form of appreciated format.

4. Reformatted content is then delivered to the appropriate users by social media APIs and the service
delivery platform.

5. As a result, large amounts of social multimedia data are efficiently shared in the SNS application because
of PESMS.

6. PERFORMANCE EVALUATION

The experiments were conducted on a 28-node test bed, which is a single-enterprise scale cluster
consisting of 27 data nodes (slave nodes) and 1 head node (master nodes). The only way to access the cluster
is through the master node. All nodes run on Linux OS (Ubuntu 10.04 LTS). Each node is equipped with two
2.13 GHz Intel Xeon Quad-Core processors, 4 GB of registered ECC DDR memory, and a 1 TB SATA-2
HDD (7200 RPM). The machines were interconnected using a 1000 Mbps Ethernet adapter. Excluding the
hardware specifications, the experimental environments used are as follows:
 To build a variety of experimental conditions, we used image datasets (Table 1) from eight groups. The

average size of each image file is approximately 19.8 MB.
 To implement the image conversion function, we also used JAI 1.1.3 (Java Advanced Imaging) APIs and

Java 1.6.0_23.

IJECE ISSN: 2088-8708 

A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social … (Jongjin Jung)

827

 To process the large data datasets on our test bed, we selected Hadoop-0.20.2. The default options
selected for Hadoop are as follows: 1) the number of block replications is set to three, and 2) the block
size is set to 64 MB.

We conducted seven sets of experiments for our performance evaluation of the partially
implemented MapReduce-based cloud distributed and parallel data processing platform used in the PESMS.
These experiments were chosen to provide an overview of the transcoding and transmoding functions. In
particular, we measured the run time for the image conversion function based on MapReduce to convert large
amounts of image datasets into specific formats (e.g., from JPG to PNG) suitable for a variety of mobile
devices under a variety of conditions.

6.1. Performance of Transcoding

The objective of the first experiment was to measure the transcoding time and speedup for the image
conversion function under varying cluster sizes. As shown in Figure 6, the run times decrease when the
number of nodes increases. In particular, the elapsed times decrease dramatically for the first eight nodes.
From 8 to 28 nodes, the run times are reduced gradually. In addition, we also measured the parallel speedup.
The experiments were conducted with different numbers of parallel nodes to allow the parallel speedup to be
calculated. The parallel speedup calculates how much faster the parallel and distributed execution is than
running an image conversion function implemented using the same MapReduce programming in a single
node. If the speedup is greater than 1, it indicates that there is at least some gain from carrying out the
conversion in a parallel manner. If the speedup is equal to the number of machines, it indicates that our cloud
server and MapReduce programming have perfect scalability and an ideal performance. The calculated
speedups are shown in Figure 7. As the results show 2, 4, and 8 nodes used in parallel result in an ideal and
perfect scalability. Although the performance is not optimum since 10 nodes, we can see that our cloud
server has a high-performance throughput from the use of distributed processing. Moreover, for very large or
very small image datasets, we can see that the throughput in the distributed processing performance is
reduced in our cloud server. In fact, the calculated speedups of all datasets in the 28 nodes are approximately
11, 15, 19, 22, 23, 26, 27, and 27, respectively.

Figure 6. Transcoding Time versus Cluster Size

Figure 7. Speedup versus Cluster Size

6.2. Performance Based on Changes in Block Replication Options

The second experiment was conducted to measure the run times for the image conversion function
according to the changes in the number of block replications. MapReduce splits large datasets into fixed-
sized blocks, allowing a quick data search and processing. In fact, using the default replication value of 3, the
replicated data is stored in three nodes of the HDFS to rebalance the data, move copies around, and keep the
data replication high when system faults such as a disk failure, network connection problems, or other issues
occur. The purpose of this experiment is to verify how block replication will materially affect the
performance. The numbers of block replications used in experiment were 1, 2, 4, and 5 with a default value
of 3. The experiment results are shown in Table 3. The experimental results indicate that the execution times
are reduced when the block replication numbers increase. In particular, there is little difference in the
execution times for small datasets of 1 to 8 GB, whereas for larger datasets, the difference in the execution

  ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 821 – 831

828

times is bigger. In fact, for a 50 GB dataset, the execution times are 1,092, 437, and 428 s for replication
factors of 1, 2, and 3 blocks, respectively (Table 4).

We wondered whether selecting as large a number of block replications as possible would be the
best way to increase the performance and handle large amounts of datasets in our conversion module based
on MapReduce. Through this experiment, we found that processing datasets in an HDFS using a large
number of block replicas would bring about a significant amount of extra overhead. First, if the number of
block replications is larger, an increase in storage capacity needed to store the block replicas occurs. The time
required to store the block replicas also increases exponentially. For this reason, we evaluated the times
required to store replicated blocks in an HDFS depending on the increase in the number of block replications.
Table 5 shows the results of this experiment. As shown in the table, for a 50 GB dataset, the time taken to
store three block replicas in HDFS is 1984 s, while the amount of time taken for five block replicas is 3587 s.
The difference in the storage time between three and five block replicas is approximately 1,500 s. This
execution time is much greater than the difference in the run time for an image conversion under the same
conditions. Furthermore, overhead related with the job scheduling in the HDFS is generated. The point of this
experiment is to determine whether the form and size of the datasets, programming techniques, business logic,
and configuration of the cluster systems are effective for the processing when using a selected number of
block replications

Table 3. Flickr Image Datasets Used for the Performance Evaluation
SECTION CONTENT

Name Flicker dataset

Format JPG

Source Keyword: Sun

Size 1 GB 2 GB 4 GB 8 GB 10 GB 20 GB 40 GB 50 GB

Table 4. Total Image Transcoding Times (s) for the Block Replication Factors
Block

Replication
Image Dataset Size

1 GB 2 GB 4 GB 8 GB 10 GB 20 GB 40 GB 50 GB

1 28 40 63 114 135 496 975 1,092

2 25 32 50 85 103 192 358 437

3 27 32 50 85 102 186 359 428

4 30 33 50 85 103 188 358 437

5 30 33 50 85 103 192 359 437

Table 5. Execution Time (s) for Storing All Block Replications in HDFS
Block

Replication
Image Dataset Size

1 GB 2 GB 4 GB 8 GB 10 GB 20 GB 40 GB 50 GB

1 17 34 69 130 172 377 581 672

2 33 68 129 257 332 754 1,120 1,392

3 41 84 163 344 428 837 1,790 1,984

4 69 137 237 512 667 1,490 2,234 2,878

5 110 215 301 671 842 1,890 2,829 3,587

6.3. Performance Based on Changes in the Block Size Option

The purpose of the third experiment was to measure the execution times according to the block size.
Basically, Hadoop processes significant amounts of datasets after splitting them into a default block size
value of 64 MB. We measured the run times for an image conversion using 16, 32, 64, 128, 256, and 512 MB
block sizes, respectively. The results are shown in Table 6. As the results show, for a 64 MB block size, the
run time is the best among the five cases studied. If a developer sets the block size in Hadoop to smaller than
the file size (in our case, approximately 20 MB) included in the image dataset, the execution times increases
as a large number of blocks are created in the HDFS.

IJECE ISSN: 2088-8708 

A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social … (Jongjin Jung)

829

Table 6. Total Image Transcoding Time (s) Based on the Block Size
Block

Replication
Image Dataset Size

1 GB 2 GB 4 GB 8 GB 10 GB 20 GB 40 GB 50 GB

16 MB 30 51 70 155 138 349 732 902

32 MB 23 30 49 84 102 185 356 437

64 MB 23 32 49 84 102 186 356 428

128 MB 23 31 50 84 102 185 356 436

256 MB 24 30 49 85 103 185 356 436

512 MB 23 32 50 85 102 185 356 436

6.4. Image Transcoding Performance Based on Changes in the apred.tasktracker.map.tasks.maximum

Option
In the fifth set of experiments, we focused on exploring and analyzing different values for

mapred.tasktracker.map.tasks.maximum. This option represents the maximum number of map tasks
performed simultaneously in a single data node.

Before performing this set of experiments, we expected that the transcoding job performance for the
maximum number of map slots would depend on the number of CPUs in the physical machine, i.e., if the
value is set to 4, the four map tasks used to process the MapReduce job are performed simultaneously in a
single data node. It was expected that a value of 8 would exhibit a better performance than the other values.
In fact, from the experimental results shown in Figure 8, the best transcoding performance is achieved when
the value of this option is set to 8, because our system has eight CPUs in each node.

Figure 8. Total Transcoding Time in Hadoop for 5, 10, and 20 GB Datasets
for Various Values of mapred.tasktracker.map.tasks.maximum

6.5. Image Transcoding Performance for Resizing an Image Dataset

For this performance evaluation, we measured the total transcoding times for image resizing. The
transcoding times required to encode an original image dataset into QVGA (320 × 240), VGA (640 × 480),
and WVGA (800 × 408) resolutions were measured. The performance results are shown in Figure 9. We can
clearly see from the results that there is no difference in the transcoding performance for resizing an image
dataset.

7. CONCLUSION

This paper introduced an efficient multimedia processing for SNS multimedia service using cloud computing
system, more precisely Hadoop system. To do this, PESMS was designed; this provides an environment of the
developing, building of Social service by adopting cloud computing technologies and elastic computer
resources. And this study presented an image conversion module for transcoding and transmoding based on
MapReduce running on an HDFS using PESMS. The aim for proposing and implementing the image
conversion module using PESMS was to process lots of social multimedia with more efficiency.

  ISSN: 2088-8708

IJECE Vol. 5, No. 4, August 2015 : 821 – 831

830

Figure 9. Total Image Transcoding Time for Resizing an Image Resolution

We verified the excellent performance of the image conversion module using varying experimental
conditions conducted on a 28-node test bed. In fact, we measured the run times for an image conversion
under seven sets of experiments: changes in the cluster size, block replication factor, block size, JVM reuse
factor, mapred.tasktracker.map.tasks.maximum option, resizing function, and conversion formats. Our
conversion module can reduce the run times for converting image datasets into specific formats suitable for
various devices. In particular, based on the experimental results on the changes in the Hadoop options, we
can see that MapReduce programmers should carefully consider selecting options related with the block size
and block replication, JVM reuse option, and mapred.tasktracker.map.tasks.maximum option depending on
the form and size of the datasets, the programming techniques, the business logic, and the configuration of
the cluster systems.

Finally, due to PESMS that is PaaS platform, service provider or developer could easily develop
social multimedia service without complex installation. They only have to consider application. We can
conclude that PESMS is worthy for a large social multimedia data processing.

ACKNOWLEDGEMENTS

This work was supported by the IT R&D program of MSIP/IITP. [B0101-15-0559, Developing On-
line Open Platform to Provide Local-business Strategy Analysis and User-targeting Visual Advertisement
Materials for Micro-enterprise Managers] and MSIP(Ministry of Science, ICT and Future Planning), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2015-H8501-15-1004)
supervised by the NIPA(National IT Industry Promotion Agency.

REFERENCES
[1] Kim M., Lee H., Lee H., SMCCSE: PaaS Platform for processing large amounts of social media, The 3rd

International Conference Internet, Malaysia, (2011), 631-635.
[2] Kim M., Lee H., SMCC: Social Media Cloud Computing Model for Developing SNS based on Social Media,

Springer Communications in Computer and Information Science, 206(2011), 259-266.
[3] Golbeck J., Robles C., Turner K., Predicting Personality with social media, Conference on Human Factors in

Computing Systems, Vancouver, (2011) , 253-262.
[4] Wikipedia,http://en.wikipedia.org/wiki/Social_media, 2011.2
[5] Kaplan A.M., Haenlein M., Users of the world, unite! The challenges and opportunities of Social Medial, Journal of

business horizons, 53(2010), 59-68.
[6] Kim Hak J., Online Social Media Networking and Assessing Its Security Risks, International Journal of Security

and Its Applications, 6(2012), 11 – 18.
[7] Peter Mell, Timothy Grance, The NIST Definition of Cloud Computing, Special Publication 800-145, September

2011
[8] http://www-01.ibm.com/software/data/infosphere/hadoop/
[9] Li X., Shi Y., Guo Y., Ma W., Multi-Tenancy Based Access Control in Cloud, 2010 International Conference on

Computational Intelligence and Software Engineering, Wuhan, China, (2010),1-4.

IJECE ISSN: 2088-8708 

A Study on Efficient Design of A Multimedia Conversion Module in PESMS for Social … (Jongjin Jung)

831

[10] Ouirdi M.E., Ei A., Segers J., Henderickx, E, Social Media Conceptualization and Taxonomy: A Lasswellian
Framework, Journal of Creative Comm., 9(2014), 107-126.

[11] Scheepers H., Scheepers R., Stockdale R., Nurdin, N., The dependent variable in social media use, Journal of
Computer Information Systems, 54(2012), 25-34.

[12] Apache HBase, http://hbase.apache.org/.
[13] Wikipedia, ttp://en.wikipedia.org/wiki/Apache_ Hadoop , 2011.
[14] Diaz-Sanchez D., Almenares F., Marin A., Proserpio D., Media Cloud: Sharing Contents in the Large, 2011 IEEE

International Conference on Consumer Electronics (ICCE), Las Vegas, NV, (2011), 227-228.
[15] Wang L., Von Laszewski G., Young A., He X., Kunze M., Tao J., Fu C., Cloud Computing: A Perspective Study,

New Generation Computing, 28(2010) 137-146.
[16] Kim M., Han S., Cui Y., Lee H., CloudDMSS: robust Hadoop-based multimedia streaming service architecture for

a cloud computing environment, Cluster Computing, (2014),In Press.
[17] Xu Y., Mao S., A survey of mobile cloud computing for rich media applications, IEEE Wireless Communications,

20(2013), 46-53.
[18] Xen, ttp://www.xen.org/support/documentation.html.
[19] Shvachko K., Kuang H., Radia S., Chansler R., The Hadoop Distributed File System, 2010 IEEE 26th Symposium

on Mass Storage Systems and Technologies, (2010), 1-10
[20] The Hadoop Distributed File System: Architecture and Design,

http://hadoop.apache.org/common/docs/r0.18.0/hdfs_ design.pdf.
[21] Lee H., Kim M., Her J., Lee H., Implementation of MapReduce-based Image Conversion Module in Cloud

Computing Environment, International conference on Information Networking, (2012), 234-238.

BIOGRAPHIES OF AUTHORS

Jongin Jung received an M.S. degree from Sung Kyun Kwan University, Seoul, Korea, in 2002.
Currently, he is a Ph.D. student in the department of Internet and Multimedia Engineering at the
KonKuk University, and he is a team leader of Smart Life Service Developtment part in Smart
Media Research Center of Korea Technology Institute. He is interested in the cloud computing,
big data, Hadoop.

Myoungjin Kim received an M.S. degree from Konkuk University, Seoul, Korea, in 2009.
Currently, he is a candidate of Ph.D. in the department of Internet and Multimedia Engineering
at the same university, and he is also an assistant researcher at the Social Media Cloud
Computing Research Center. His research interests include distributed computing, distributed
realtime programming, MapReduce, media transcoding and cloud computing.

Hanku Lee is the director of the Social Media Cloud Computing Research Center and an
associate professor at the division of Internet and Multimedia Engineering, Konkuk University,
Seoul, Korea. He received a Ph.D. degree in Computer Science from Florida State University,
USA. His recent research interests include cloud computing, distributed real-time systems,
distributed computing, and compilers.

