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 Reducing energy consumption is a critical issue in the design of battery-
powered real time systems to prolong battery life. With dynamic voltage 
scaling (DVS) processors, energy consumption can be reduced efficiently by 
making appropriate decisions on the processor speed/voltage during the 
scheduling of real time tasks. Scheduling decision is usually based on 
parameters which are assumed to be crisp. However, in many circumstances 
the values of these parameters are vague. The vagueness of parameters 
suggests that to develop a fuzzy logic approach to reduce energy 
consumption by determining the appropriate supply-voltage/speed of the 
processor provided that timing constraints are guaranteed. Intensive 
simulated experiments and qualitative comparisons with the most related 
literature have been conducted in the context of dependent real-time tasks. 
Experimental results have shown that the proposed fuzzy scheduler saves 
more energy and creates feasible schedules for real time tasks. It also 
considers tasks priorities which cause higher system utilization and lower 
deadline miss time.
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1. INTRODUCTION  

Real-time systems are vital to industrialized infrastructure such as command and control, process 
control, flight control, space shuttle avionics, air traffic control systems and also mission critical 
computations [1]. In all cases, time has an essential role and having the right answer too late is as bad as not 
having it at all. In the literature, these systems have been defined as: “systems in which the correctness of the 
system depends not only on the logical results of computation, but also the time at which the results are 
produced” [1]. Such systems must react to the requests within a fixed amount of time which is called 
deadline. Scheduling algorithms of these systems may be considered one of the key components of a real-
time system, which can either enable the system to thrive or bring it to its knees. Strict timing requirements 
must often be met within highly dynamic environments which do not lend themselves well to static 
scheduling algorithms. The level of uncertainty in dynamic, real-time environments is such as to require 
significant flexibility and adaptivity from real systems.  Fuzzy logic contributions in this issue in the form of 
approximate reasoning, where it provides decision-support and expert systems with powerful reasoning 
capabilities bound by a minimum number of rules. Theoretically, fuzzy logic is a method for representing 
analog processes, or natural phenomena that are difficult to model mathematically on a digital computer. 
Therefore Fuzzy systems fit as scheduling algorithm building into the real-time system flexibility and 
adaptation to the uncertainty inherent in real-time environments and offers a means to improve several 
important characteristics of real-time systems.    
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Since most of real time systems (devices) are battery powered. As the applications on these devices 
are being complicated, the energy consumption is also effectively increasing. So, minimizing energy 
consumption is a critical issue in the design of these systems, and techniques that reduce energy consumption 
have been studied at different levels in details [2]. 

Dynamic voltage scaling (DVS) is a technique that varies the supply voltage and clock frequency 
(speed) based on the computation load to provide desired performance with the minimal amount of energy 
consumption in ubiquitous embedded systems. 

The power consumption has two essential components: dynamic and static power. The dynamic 
power consumption, which is the main component, has a quadratic dependency on supply voltage [3] and can 
be represented as: 

 
Pdynamic = Cef . Vdd2 . F (1) 
 
Where Cef is the switched capacitance, Vdd is the supply voltage, and F is the processor clock 

frequency (sometimes referred as speed S) which can be expressed in terms of supply voltage Vdd and 
threshold voltage Vt  as following:  

 
F = k . (Vdd – Vt )2 / Vdd (2) 
 
The static power consumption is primarily occurred due to leakage current (Ileak) [3], and the static 

(leakage) power (Pleak) can be expressed as: 
 
Pleak = Ileak  .  Vdd (3) 
 
When the processor is idle, a major portion of the power consumption comes from the leakage. 

Currently leakage power is rapidly becoming the dominant source of power consumption in circuits and 
persists whether a computer is active or idle [2], and much work has been done to address this problem [3,4]. 

So, lowering supply voltage is one of the most effective ways to reduce both dynamic and leakage 
power consumption. As a result, it reduces energy consumption where the energy consumption is the power 
dissipated over time: 

 
Energy = ∫ Power dt (4) 
 
However, DVS aims at reducing energy consumption by reducing the supply-voltage/speed of the 

processor provided that timing constraints are guaranteed. In other words, DVS makes use of the fact that 
there is no benefit of finishing a real time job earlier than its deadline. 

DVS processors have two types [4]: ideal and non-ideal. An ideal processor can operate at any 
speed in the range between its minimum available speed and maximum available speed. A non-ideal 
processor has only discrete speeds with negligible or non-negligible speed transition overheads. Another 
classification defines four different types of DVS systems: ideal, feasible, practical, and multiple [4].   

In this paper, our motivation is to develop a fuzzy logic approach to reduce energy consumption by 
determining the appropriate supply-voltage/speed of the processor provided that timing constraints are 
guaranteed. Fuzzy logic approach is proposed because in a dynamic hard real-time system, not all the 
characteristics of tasks (e.g., precedence constraints, resource requirements, etc.) are known a priori. For 
example, the arrival time for the next task is unknown for aperiodic tasks. To be more precise, there is an 
inherit uncertainty in hard real-time environment which will worsen scheduling problems (e.g. arbitrary 
arrival time, uncertain computation time and deadline). Characteristics of a task that may be uncertain 
include expected next arrival time, criticality, or importance of the task, system load and/or predicted load of 
individual processors, and run time, or more specifically average vs. worst-case run time. Therefore, our goal 
is to develop an approach for hard real-time scheduling that can be applied to a dynamic environment 
involving a certain degree of uncertainty.  In this paper, we concentrate on a hard real time system on a 
preemptable uniprocessor system with a set of dependent tasks. These tasks will be characterized by worst-
case computation time, blocking time and task deadline. 

The rest of the paper is organized as follows: section 2 outlines the related work to the theme of this 
paper. Section 3 demonstrates the multi-speed algorithm. Section 4 gives an overview about fuzzy inference 
system. Section 5 shows the proposed fuzzy system. Section 6 presents experiments and discussions. Section 
7 concludes the paper. 

 
 



IJECE  ISSN: 2088-8708  
 

Processor Speed Control for Power Reduction of Real-Time Systems (Medhat H Awadalla) 

703

2. RELATED WORK 
Many Researchers have tried to implement fuzzy logic to schedule the processes. There are four 

main approaches reported in the literature for the fuzzy scheduling problems; fuzzifying directly the classical 
dispatching rules, using fuzzy ranking, fuzzy dominance relation methods, and solving mathematical models 
to determine the optimal schedules by heuristic approximation methods [5]. Round robin scheduling using 
neuro fuzzy approach and Soft real-time fuzzy task scheduling for multiprocessor systems [6]. Fuzzy Better 
Job First (FBJF) scheduling algorithm logically integrates parameters and uses fuzzy ranking approach to 
determine the next most worthy job to be executed has been proposed [7]. A fuzzy scheduling approach to 
arrange real-time periodic and non-periodic tasks with reference to optimal utilization of distributed 
processors has been proposed [8]. In their paper, an attempt is made to apply fuzzy logic in the design and  

implementation of a modified scheduling algorithm to overcome the shortcoming of well-known 
scheduling algorithms. Furthermore, many dynamic and static scheduling algorithms [9-10] have been 
proposed and applied on uniprocessor systems. Also multiprocessor and distributed systems have been 
considered [11]. 

Regarding the energy efficient scheduling, Weiser et al. [12] are considered the pioneers in that field 
where they expected the DVS technique, then Yao et al. [13] have proposed an optimal static (offline) 
scheduling algorithm by considering a set of aperiodic jobs on an ideal processor. However, the problem of 
DVS with dependent tasks because of shared resources has been first addressed in [14]. Jejurikar and Gupta 
[15] have proposed two algorithms for scheduling fixed priority, Rate Monotonic (RM) scheduler, tasks 
using priority ceiling protocol (PCP) described in [16] as resource access protocol. They have computed 
static slowdown factors which guarantee that all tasks will meet their deadlines taking into account the 
blocking time caused by the task synchronization to access shared resources. In their first algorithm, critical 
section maximum speed (CSMS), they have let the critical sections (sections deal with shared resources) to 
be executed at maximum processor speed and they have computed slowdown factors for executing non 
critical sections. The second algorithm, constant static slowdown (CSS), computes a uniform slowdown 
factor for all tasks and for all sections (critical and non-critical) saving speed switches occurred in the first 
algorithm (CSMS). 

The same authors [17] have then extended their previous algorithms (CSMS and CSS) to handle 
dynamic priority, Earliest Deadline First (EDF) scheduler, tasks using dynamic priority ceiling protocol 
(DPCP) shown in [18]. The dynamic priority ceiling protocol is an extension of original priority ceiling 
protocol to deal with dynamic priority tasks (EDF scheduling). Jejurikar and Gupta [19] have also proposed a 
generic algorithm that works with both EDF and RM schedulers, and they have introduced the concept of 
frequency inheritance in their algorithm. Zhang and Chanson [20] have worked on the same problem 
(scheduling of dependent tasks) and proposed three algorithms for energy efficient scheduling of dependent 
tasks with shared resources over EDF scheduler, where they have used stack resource policy (SRP) proposed 
by Baker [21] as resource access protocol. The SRP can handle static and dynamic priority tasks (EDF and 
RM schedulers), reduces context switches over PCPs, and is easy implemented. The first algorithm is the 
same as CSS for EDF scheduler proposed in [22] because they have derived the static slowdown factor 
directly from the EDF schedulability test with blocking time in [23]: 
 

∀݅, 1  ݅  ݊,
ܤ
ܦ


ܥ
ܦ

 1



ୀଵ

 (5) 

 
where C is the computation time (worst case execution time WCET), D is the task relative deadline, 

n is the number of tasks, and B is the blocking time that can be defined as the maximum time through which 
a high priority task can be blocked by a low priority task due to exclusive access to shared resource (index i 
refers to the blocked high priority task). The second algorithm is the dual speed (DS) algorithm. The main 
concept of this algorithm is using two speeds (L, H) and switching between them. Initially the algorithm 
operates with the low speed L, and switches to the high speed H as soon as a blocking occurs. The last 
algorithm is the dual speed dynamic (online) reclaiming algorithm which dynamically collects the residue 
time from early completed jobs and redistributes it to the other pending jobs to further reduce the processor 
speed and achieve more energy saving. Then the same authors [24] developed their previous algorithms to 
achieve more energy saving and also to function with RM scheduler in addition to EDF scheduler. Baruah 
[25] has taken a closer look at EDF-scheduled systems in which access to shared resources is arbitrated by 
the SRP. (He has referred to such systems as EDF+SRP scheduled systems), where he has proved that under 
certain assumptions EDF+SRP is optimal, but he has not taken energy efficiency into account. Lee et al. [26] 
have developed the dual speed (DS) algorithm proposed by Zhang and Chanson [24] to use multiple speeds 
instead of two speeds to get their first multi-speed (MS) algorithm. Also they have proposed an enhanced 
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multi-speed (EMS) algorithm that further reduces the energy dissipation by considering only remaining 
blocking time to compute a lower speed. 

 
 

3. SYSTEM MODEL 
 

3.1. Task Model 
In this paper, for simplicity, real-time periodic tasks are considered. Each task τ is characterized by 

the following parameters: 
 The release time (r): the time when the task first released. 
 The period (T): the constant interval between jobs. 
 The relative deadline (D): the maximum acceptable delay for task processing. 
 The computation time (C): the worst case execution time (WCET) of any job. 
 The blocking time (B): the maximum time a task can be blocked by another lower priority task. 
In this paper we consider well formed tasks that satisfy the condition:  0 ≤ C ≤ D ≤ T. 
A 3-tuple τ ={C, D, T} represents each task, the relative deadline is assumed to be the same as the period in 
all illustrative examples. 
 
3.2. Processor Model 

The tasks are scheduled on a single DVS processor that supports variable frequency (speed) and 
voltage levels continuously, i.e. DVS processors can operate at any speed/voltage in its range (ideal). Of 
course, practical DVS processors supports discrete speed/voltage levels (non ideal). So, the desired 
speed/voltage of the ideal DVS processor is rounded to the nearest higher speed/voltage level the practical 
DVS processor supports. The time (energy) required to change the processor speed is very small compared to 
that required to complete a task. It is assumed that the voltage change overhead, similar to the context switch 
overhead, is incorporated in the task computation time. In this paper, it is assumed that the processor’s 
maximum speed is 1 and all other speeds are normalized with respect to the maximum speed. 
 
 
4. MULTI-SPEED ALGORITHM 

Multi-speed (MS) algorithm proposed by Lee et al. [25] is a blocking aware scheduling algorithm 
with non-preemptible critical sections using SRP as resource access protocol. 

The MS algorithm can be considered as an extension of dual speed (DS) algorithm [24], where the 
difference between the two algorithms is that MS algorithm uses many speeds (low speed SL and multiple 
high speeds Sm where 1 ≤ m ≤n ) instead of two speeds (low speed L and one high speed H) in DS algorithm. 
Like DS algorithm, MS algorithm initially starts with the low speed SL then it switches to one of high speeds 
as soon as a blocking occurs. The high speed to which the MS algorithm switches is determined according to 
the blocking task, i.e. each blocking task τm has its own high speed Sm, and according to the blocking task, 
the algorithm switches to the convenient high speed. The low speed SL, which is exactly the same as low 
speed L in DS algorithm, is the optimal lowest speed with which all tasks can be scheduled without missing 
any deadline, and it is derived from the plain EDF schedulability test without shared resources: 
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The high speed Sm for a blocking task τm is derived as in DS algorithm from the EDF 

schedulability test with shared resources and SRP protocol: 
 

∀݇, 1  ݇ ൏ ݉,൬
ܥ
ܦ
൰



ୀଵ


ܤ
ܦ

 ܵ (7) 

 
Where the blocking time Bm here is the maximum time (length of critical section of τm) through 

which a low priority task τm can block another high priority task due to exclusive access to shared resource 
and unlike mentioned before, index m refers to the blocking task (low priority task). The above mentioned 
speeds SL and Sm have to satisfy the condition:  
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ܵ  ܵ  1 (8) 
 

MS algorithm ends the high speed interval when the deadline of the blocking task is reached or the 
processor becomes idle. In some real time tasks [23], MS improves the energy consumption however in 
others tasks, the timing constraints are not guaranteed.  
 
 
5. FUZZY INFERENCE SYSTEMS 

A fuzzy inference system (FIS) tries to derive answers from a knowledgebase by using a fuzzy 
inference engine. The inference engine which is considered to be the brain of the expert systems provides the 
methodologies for reasoning around the information in the knowledgebase and formulating the results. Fuzzy 
logic is an extension of Boolean logic dealing with the concept of partial truth that denotes the extent to 
which a proposition is true. Whereas classical logic holds that everything can be expressed in binary terms (0 
or 1, black or white, yes or no), fuzzy logic replaces Boolean truth values with the degree of truth. Degree of 
truth is often employed to capture the imprecise modes of reasoning that play an essential role in the human 
ability to make decisions in an environment of uncertainty and imprecision. The membership function of a 
fuzzy set corresponds to the indicator function of the classical sets. It can be expressed in the form of a curve 
that defines how each point in the input space is mapped to a membership value or a degree of truth between 
0 and 1. The most common shape of a membership function is triangular, although trapezoidal and bell 
curves are also used. The input space is sometimes referred to as the universe of discourse [6]. Fuzzy 
Inference Systems are conceptually very simple. An FIS consists of an input stage, a processing stage, and an 
output stage. The input stage maps the inputs, such as deadline, execution time, and so on, to the appropriate 
membership functions and truth values. The processing stage invokes each appropriate rule and generates a 
result for each. It then combines the results of the rules. Finally, the output stage converts the combined result 
back into a specific output value [6]. As discussed earlier, the processing stage, which is called the inference 
engine, is based on a collection of logic rules in the form of IF-THEN statements, where the IF part is called 
the "antecedent" and the THEN part is called the "consequent". 

Typical fuzzy inference subsystems have dozens of rules. These rules are stored in a 
knowledgebase. An example of fuzzy IF THEN rules is: IF deadline is early then priority is high, in which 
deadline and priority are linguistics variables and priority  and high are linguistics terms. The five steps 
toward a fuzzy inference are as follows: 
1. Fuzzifying inputs 
2. Applying fuzzy operators 
3. Applying implication methods 
4. Aggregating outputs 
5. Defuzzifying results 

Below is a quick review of these steps. However, a detailed study is not in the scope of this paper. 
Fuzzifying the inputs is the act of determining the degree to which they belong to each of the appropriate 
fuzzy sets via membership functions. Once the inputs have been fuzzified, the degree to which each part of 
the antecedent has been satisfied for each rule is known. If the antecedent of a given rule has more than one 
part, the fuzzy operator is applied to obtain one value that represents the result of the antecedent for that rule. 
The implication function then modifies that output fuzzy set to the degree specified by the antecedent. Since 
decisions are based on the testing of all of the rules in the Fuzzy Inference Subsystem (FIS), the results from 
each rule must be combined in order to make the final decision. Aggregation is the process by which the 
fuzzy sets that represent the outputs of each rule are processes into a single fuzzy set. The input for the 
defuzzification process is the aggregated output fuzzy set and the output is then a single crisp value [6]. This 
procedure can be summarized as follows: mapping input characteristics to input membership functions, input 
membership function to rules, rules to a set of output characteristics, output characteristics to output 
membership functions, and the output membership function to a single crisp valued output. There are two 
common inference methods [6]. The first one is called Mamdani's fuzzy inference method proposed by 
Ebrahim Mamdani [8] and the second one is Takagi-Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference introduced in [9]. These two methods are the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators. The main difference between Mamdani and Sugeno is that the 
Sugeno’s output membership functions are either linear or constant but Mamdani’s inference expects the 
output membership functions to be fuzzy sets.  
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6. THE PROPOSED MODEL 
In the proposed model, the input stage consists of four input variables i.e. worst execution time, 

deadline, blocking time and arriving time as shown in Figure 1. Worst execution time is the actual amount of 
time a task requires on CPU to get executed, blocking time is how much time a task can wait before getting a 
chance to get executed, Deadline represents the final time limit before what a task has to get terminated 
whereas the arriving time is the time at which the job is ready to be assigned to the processor. The 
combination of four input parameters decides the job priority and the appropriate processor speed to execute 
it. 
 
 

 
 

Figure 1. Inference system block diagram 
 
 

Membership functions describe the degree to which each input parameter represents its association. 
Linguistic variables are assigned to each input parameter, to represent this association. Worst execution time 
is categorizes as Low, Medium and High. Similarly blocking time is defined in the same way. However, 
Deadline and Arriving time are defined as early, medium and late. The output parameters, job priority and 
processor speed are defined as low, medium and high as depicted in Figure 2. Table 1 depicts the values used 
for constructing these various fuzzy membership functions. 
 
 

 
 

Figure 2. Membership functions of the system parameters 
 
 

Fuzzy rules try to combine these parameters as they are connected in real worlds. Some of these 
rules are mentioned in Table 1: 

For instance, rule no-6 and rule no-21 (Table 2) are activated for the control of job priority and 
processor speed. The resultant priority and processor speed are also given in Figure 3, from which the crisp 
output values can be determined. In fuzzy inference systems, the number of rules has a direct effect on its 
time complexity. Therefore, having fewer rules may result in a better system performance.  

In our proposed approach, a newly arrived task will be added to the input of job queue. This queue 
has the remaining tasks from last cycle that has not yet been assigned. The following algorithm will be 
executed:  

 

  Low Medium High

 timeBlocking

Low Medium High

timeexecution 
 

case worst 

Medium MediumSlow Fast

Priority speedProcessor 

Low High

Early Medium Late

 timeArriving

Early Medium Late

Deadline
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Table 1. Values used for constructing various fuzzy membership Functions 
Variables Early Medium Late 
Deadline 1 2.5 5 

2 3 8 
3 6 10 

(Parameters for deadline) 
 

Variables Low Medium High 
Worst case 
execution 

time 

1 2.5 5 

2 3 8 
3 6 10 

(Parameters for worst case execution time) 
 

Variables Early Medium Late 
Arriving time 0.0 0.6 2.0 

0.6 2.0 3.4 
2.0 3.4 4.0 

(Parameters for arriving time) 
 

Variables Low Medium High 
Blocking time 0.0 0.8 2.0 

0.8 2.0 3.2 
2.0 3.2 4.0 

(Parameters for blocking time) 
 

Variables Low Medium High 
Priority 1 3.5 6.5 

2.5 5.5 8.5 
4 7 10 

(Parameters for priority) 
 

Variables Slow Medium Fast 
Processor 

speed 
0.1 0.35 0.65 
0.25 0.55 0.8 
0.4 0.7 1 

(Parameters for processor speed) 

 
 

Table 2. Some of deleoped fuzzy rules 
Fuzzy 
Rule  
No. 

Deadline Worst case 
execution 
time 

Arriving 
time 

Blocking 
time 

priority Processor  
speed 

1 Early Low Early Low High Slow 
2 Early Low Early Medium High Medium 
3 Early Medium Medium Low High Medium 
4 Medium Medium Medium Low Medium Medium 
5 Medium Medium Medium High Medium Fast 
6 Medium High Medium High Medium Fast 
7 Late High Late High Low Fast 
8 Late High Late Medium Low Medium 
9 Late Low Late Medium Low Medium 
10 Early Low Late Medium High Medium 
11 Early High Medium Low High Medium 
12 Early High Medium High High Fast 
13 Medium Low Late High Medium Fast 
14 Late Low Late High Low Fast 
15 Medium Low Early Medium Medium Medium 
16 Medium Medium Medium Medium Medium Medium 
17 Early High Late Low High Low 
18 Medium High High Low Medium Low 
19 Late High Early High Low Fast 
20 Late Low Late Low Low Low 
21 Late Medium Late Medium Low Medium 
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Figure 3. Activation of rule 6 and 21 
 
 
Loop  

1. For each ready task, feed the deadline, execution time, blocking time and arriving time into the 
inference engine. Consider the output of inference module as priority of the task and the processor speed.  

2. Execute the task with highest priority with the decided speed unless it is blocked by lower priority 
job until a scheduling event occurs (a running task finishes, a new task arrives). 

3. Update the system states.  
End Loop 

We chose to treat deadline time as the most important principles behind choosing a task for 
scheduling because the major purpose of hard real-time scheduling is to meet the deadline. After this, worst 
execution time and then earliest arriving time. However if the lowest priority job is only available job, it will 
be assigned to the processor till another higher priority job arrives. Since the paper has another objective 
which is to reduce the power consumption, after deciding which job will be assigned to the processor, the 
system will decide at which speed the processor should perform. The processor speed is mainly affected by 
speed of the blocking time of the lower priority tasks.  
 
 
7. Experiments and Discussion  

To illustrate the fuzzy approach and the contribution of this paper.  Examples implemented in [23] 
are repeated for the sake of qualitative comparison and other tasks have been performed to address the 
generalization of applying fuzzy logic as a scheduler approach and its capability to minimize the energy 
consumption of powered real time systems. The first hard real time system with three tasks is considered as 
following: 
 

τ1={1 ,4 ,4 }, τ2={1.5 ,12 ,12 }, τ3={3 ,24 ,24 } 
 

The arrival times and critical sections of the three tasks within the least common multiple (LCM) of 
periods are shown in figure 4(a). 

According to the developed inference system, τ1 has the highest priority, followed by τ2 and lastly 
τ3. The resultant low speed SL is equal 0.5, which is the same as calculated based on equation 6 that 
represents the processor utilization factor U=∑C/T [26]. There are two blocking tasks in this example: τ2 that 
can block higher priority task τ1 for maximum time B2=1.5 and τ3 that can block higher priority tasks τ1 and 
τ2 for maximum time B3=3. So, there will be two high speeds (S2, S3) according to these two blocking tasks, 
and these two speeds are S2 = 0.6, and S3 = 0.92. The two speeds (S2, S3) also satisfy the condition (7), 
where 0.5 ≤ S2 ≤ 1 and 0.5 ≤ S3 ≤ 1. 

 
activated is 1a-Table from 6 - Rule

activated is 1b-Table from 21 - Rule

 timeBlockingDeadline timeexecution   caseWorst 

21-Rule  and  6-Rule

 frompriority Resultant 

21-Ruleand 6-Rule from

  speed processor  Resultant 

 timeArriving

Deadline timeexecution   caseWorst  timeBlocking  timeArriving
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Figure 4. (a) Task set description: arrival times, computation times, and critical sections. (b) MS algorithm. 
(c) Fuzzy logic. 

 
 

The rectangles represent the processing of tasks (jobs) by CPU where the vertical dimension 
represents the processor speed, and the horizontal dimension represents the execution time elapsed for 
processing tasks according to their WCETs and the processor speed. It is clearly noted that the area of the 
rectangles of the jobs of the same task is the same due to that a task always takes the same number of 
execution cycles which equals to processor speed multiplied by elapsed time. 

Back to figure 4(a), it is assumed that τ3 is released before τ1 with enough time (ε) to lock the shred 
resource. When task τ1 is released, it will be blocked by the lower priority task τ3 due to exclusive access to 
shared resource (according to SRP, a task may be blocked when it is released, and as soon as it starts, it can 
not be blocked). So, the processor will start executing τ3 with  high speed S3. At time t=4, when the second 
job of task τ1 is released, it is also blocked by the lower priority task τ2 released before it with enough time 
(ε) to lock the shred resource.  

MS algorithm which operates with  high speed S3 switches to the maximum of the two high speeds 
(S3,S2) which is S3, and MS algorithm ends this high speed interval and switches to the low speed SL at time 
t=6.5 when the processor becomes idle as shown in figure 4(b). 

At time t=16, when the fifth job of task τ1 is released, it will be blocked by the second job of task 
τ2, and MS algorithm switches to the high speed S2 and ends this high speed interval when the processor 
becomes idle.  

The same scenario is happened in the case of the proposed fuzzy logic approach, as shown in figure 
4(c), it starts with  high speed S3, however it switches to S2 as long as τ2 showed up. Fuzzy logic ends this 
high speed interval S2 and switches to the low speed SL at time t=9 when τ1 is released. The processor idle 
time is reduced from 33% in MS to 23% in fuzzy logic approach which reflects the improvements achieved 
in the system performance in addition to there is no deadline miss, furthermore the interval of S3 is reduced 
which in turn reduce the power consumption.  

Another hard real time system with three tasks is addressed: 
 

τ1= {2, 5, 5}, τ2= {2.5, 10, 10}, τ3= {4, 40, 40} 
   

In this example, τ1 has the highest priority, τ2 is middle and then τ3 is the lowest one. The resultant 
low speed SL is equal 0.7, which is less than the low speed calculated based on equation 6.  There are two 
blocking tasks in this example: τ2 that can block higher priority task τ1 for maximum time B2=2, and τ3 that 
can block higher priority tasks τ1 and τ2 for maximum time B3=3. So, there will be two high speeds (S2, S3). 
S2= 0.8, and S3=1. The two speeds (S2, S3) also satisfy the condition (7), where 0.7 ≤ S2 ≤1 and  
0.7 ≤ S3 ≤ 1. 

Figure 5(b) shows MS algorithm which ends the high speed interval when processor becomes idle 
(at times t=10.75, t=19.75, t=29.75, and t=39.75) or the deadline of blocking task is reached, while figure 
5(c) shows the fuzzy logic approach which ends the high speed interval when the blocked task deadline is 
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reached (at time t=6), the processor becomes idle, or a lower or equal priority is selected to run (at times 
t=10, t=19.125, t=29.125, and t=39.125).  
 
 

 
 

Figure 5. (a) Task set description: arrival times, computation times,  
and critical sections. (b) MS algorithm. (c) Fuzzy logic 

 
 

Again another more example, hard real time system with the following three tasks is implemented: 
 

τ1={1, 4, 4 }, τ2={2, 8, 8 }, τ3={3, 10, 10 } 
 

Again the arrival times and critical sections of the three tasks within the least common multiple 
(LCM) of periods are shown in Figure 6(a).  Again τ1 has the highest priority, τ2 is middle and then τ3 is the 
lowest one. The resultant low speed SL is equal 0.8, and s2= 0.825 and s3=0.875 

There is again an improvement in the system performance based on fuzzy logic compared with MS 
algorithm where the processor idle time is reduced from 4.28% to 2.6%. 
 
 

 
 

Figure 6. (a) Task set description: arrival times, computation times,  
and critical sections. (b) MS algorithm. (c) Fuzzy logic 
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For the sake of comparison, table 3 depicts the average consumed power in the proposed approach and most 
related work, MS, IMS and CSS [25]. 
 

 

Table 3. Average consumed power in the proposed approach, MS, IMS and CSS [25] 
Approach 

       Task 
Task1 Task2 Task3 

Fuzzy logic 23% 5.8% 2.6% 
IMS 28.6% 7.2% 3.8% 
MS 33% 10% 4.28% 
CSS 37% 12% 6.3% 

 
 

Referring to Figures (4-6), reducing the time during which the processor is idle comes from 
lowering the processor speed for longer time intervals. This, in turn, reduces the energy consumption 
dramatically due to quadratic dependency between power and processor speed. To verify that, a comparison 
study has been performed by computing the energy consumed in CSS, MS, and IMS using the simplified 
power model P=S2 used in [16], where the blocking time B changes from 0 to the highest amount at which 
the task set is schedulable (when Sm=1). Of course, the high speeds Sm changes from Sm=SL (when B=0) to 
Sm=1, while the low speed SL does not change. 

Of course, the high speed H changes from H=L (when B=0) to H=1, while the low speed L does not 
change. 

As it is clear from Figure 7, fuzzy logic approach is the most energy efficient algorithm especially 
with high blocking times, where the difference between the low and high speeds (L, H) increases 
significantly. 
 

 
 

Figure 7. Power consumption versus blocking time changes in example 1 
 
 

The comparison is repeated for the second and third examples, it is noticed that, as shown in Figure 
8 and figure 9, fuzzy logic approach exhibits a slight improvement over IMS with the highest blocking time 
due to the small difference between high and low speeds (H, L). 

As a result, when the blocking time is low (the high speed is almost the same as the low speed), the 
three algorithms exhibit the same performance. When the blocking time increases (the difference between the 
high and low speeds also increases), fuzzy logic approach behaves better than the other two algorithms (CSS 
and MS) especially when this difference is significant. 
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Figure 8. Power consumption versus blocking time changes in example 2 
 

 
 

Figure 9. Power consumption versus blocking tme changes in example 3 
 
 

8. CONCLUSION 
The paper has addressed the problem of real time scheduling of dependent tasks due to exclusive 

access shared resources taking into account the reducing of energy consumption as a main goal. The paper 
has proposed fuzzy logic approach to perform multi-speed (MS) scheduling algorithm, where the proposed 
algorithm has shown more energy saving than traditional MS algorithm and other related approaches.  
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