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 An accurate model of balanced and unbalanced three-phase Induction Motor 
(IM) under balanced and unbalanced supply conditions based on Winding 
Function Method (WFM) is presented in this work. In this paper, the 
unbalanced condition in three-phase IM is limited to stator winding open-
phase fault. The analysis of presented models is shown in details which allow 
predicting the performance of 3-phase IM under different conditions. 
Computer simulations were obtained using the MATLAB software for a 
three-phase squirrel cage IM. MATLAB simulation results show that the 
oscillation of the speed and electromagnetic torque has increased 
considerably due to the open-phase fault in stator windings. 
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1. INTRODUCTION 

Three-phase Induction Motors (IMs) are commonly employed in many industrial applications due to 
their reliability, robustness, low cost, good performance and need little maintenance compared with other 
types of electrical machines [1].  

The d-q model is one of the most generally models for three-phase IMs which has been presented by 
Park. Detailed d-q modeling is used to represent healthy IMs and motors under fault conditions [2]-[5]. This 
model decreases the number of equations needed for simulation. However, it requires some modification in 
model structure for each fault condition in 3-phase IM [6]. Moreover the d-q model is based on the 
supposition that the stator windings are sinusoidal distributed. This assumption is caused the harmonics of the 
windings distribution are removed in the motor analysis. Detailed modeling of 3-phase IM under fault 
condition assists understanding motor dynamic behavior for choosing appropriate methods to detect faults 
and choosing suitable control strategies. A technique based on the real distribution of stator windings for 
modeling of three-phase IM has been proposed by Toliyat et al. [7], [8]. In this technique which is called 
Winding Function Method (WFM) has been used to study healthy electrical machines and many familiar 
faults in electrical machines such as cracked rotor end rings, broken rotor bars, short circuit and abnormal 
conditions of the stator windings [9]-[16].  
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When the 3-phase IM is connected directly to power supply or an inverter in the case of electrical 
drives, the operation of the machine cannot be done under operation of balanced power supply. From many 
researches, the unbalanced power supply has damaging result on the IM performance. It induces losses, 
vibration, heating and noise [17]-[22]. Consequently, unbalancing detection in the voltage applied is 
mandatory. 

In this work, we present model of healthy and faulty three-phase IM (three-phase IM under stator 
winding open-circuit fault) under balanced and unbalanced power supply combined to the winding function 
theory. This paper is organized as follows: After introduction in section 1, in section 2, WFM model of 
healthy and faulty three-phase IM under balanced and unbalanced supply is discussed. The performance of 
the presented methods is analyzed and checked using Matlab software in section 3 and section 4 concludes 
the paper. 

 
 

2. WFM MODEL OF HEALTHY AND FAULTY THREE-PHASE IM UNDER BALANCED AND 
UNBALANCED SUPPLY  

The squirrel cage rotor of 3-phase IM and equivalent circuit of squirrel cage rotor in WFM is shown 
in Figure 1 and Figure 2 respectively.  
 
 

 
 

Figure 1. Squirrel cage rotor 
 
 

 
 

Figure 2. Equivalent circuit of squirrel cage rotor in WFM 
 
 
Moreover, the equations of healthy 3-phase IM with “m” rotor bars can be written as equations (1) and (2) 
[7], [8]. 
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(2) 

 
 
In (2), [Rs] is 3×3 consists of resistance of each coil, [Rr] is m×m matrix where, Re is the end ring 

segment resistance and Rb is the rotor bar resistance. The matrix [Lss] is 3×3 matrix. The mutual inductance 
matrix [Lsr] is 3×m matrix included of the mutual inductances between the stator coils and the rotor bars. Lmr 
is the magnetizing inductance of each rotor bar. Lb and Le are rotor bar leakage inductance and rotor end ring 
leakage inductance. Moreover, Lrirj is the mutual inductance between two rotor bars. 

The motor that is studied in this paper has 28 rotor bars and 36 stator slots. Figure 3 and Figure 4 
show the turn function of the stator phases and the turn function of first rotor bar for the healthy machine 
respectively (for the turn function of second rotor bar, the waveform of Figure 4 is shifted to the right by 
2π/28=π/14).  

 
In WFM, winding function is defined as following equation [7], [8]: 
 

      nnN   (3) 

 
where, n(φ) is the turn function and ˂n(φ)˃ is the average value of turn function. Based on equation (3), 
Figure 3 and Figure 4, the winding function of the stator phases and the winding function of first rotor bar are 
shown in Figure 5 and Figure 6 respectively. 
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Figure 3. Turn function of stator phases 
 
 

 
 

Figure 4. Turn function of first rotor bar 
 
 

 
 

Figure 5. Winding function of stator phases  
 
 

 
 

Figure 6. Winding function of first rotor bar  
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The mutual inductance between windings B and A (LBA) in terms of turn function and winding 

function is calculated by [7]: 
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where “r” is rotor radius, “l” is stack length, “g” is effective air gap, nB(φ) is turn function of winding B and 
NA(φ) is winding function of winding A. Moreover, μo=4πE-7. From Figures 3-6 and equation (4), Lss, Lsr 
and Lrr can be calculated as: 
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Therefore Lss is obtained as equation (8). 
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Therefore Lsr is obtained as equation (13).    
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As mentioned before, the motor that is studied in this paper has 28 rotor bars (α=2π/28=π/14) and 36 
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Therefore Lar1 (inductance between the phase “a” of the stator winding and first rotor bar) is 
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The same process can be done for “Lar2, Lar3, …, Lbr1, Lbr2, … and Lcr1, Lcr2, …”. 
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As the rotor bars are the same, therefore the general form of rotor inductances are obtained as 
following equation: 
 

392
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Equations (1) and (2) can be written as (19) and (20).  
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(20) 

 
Equations of 3-phase IM when one of the stator phases opened have the similar structure to the 

healthy 3-phase machine equations. The only different is that, in the faulty mode, the row and column for the 
faulted phase is removed. Therefore, during stator winding open-phase fault, (19) and (20) change to (21) and 
(22) (in this paper it is assumed that a phase cut-off fault is occurred in phase “c” of the stator windings). 
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3. SIMULATION RESULTS  

The WF model presented in the section 2 has been implemented in the Matlab (M-File) 
environment. The 3-phase IM used in this paper is 7.5Hp, 400V, 60Hz, 2Poles. Their detailed motor 
parameters are given as follows:  

 
Effective air gap: g=0.9874E-3m 
Stack length: l=102.4128E-3m       
Rotor radius: r=63.2968E-3m        
Stator resistance: rs=1.76Ω 
Rotor bar resistance: Rb=68.34E-6Ω 
Rotor end ring segment resistance: Re=1.56E-6Ω    
Rotor bar leakage inductance: Lb=0.28E-6H 
Rotor end ring leakage inductance: Le=0.03E-6H 
Inertia: J=0.03kg.m2 
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The 3-phase motor studied under two different source conditions: A: sinusoidal 3-phase power 

supply (Figure 7(a) and Figure 8(a)) and B: unbalanced non-sinusoidal 3-phase power supply (Figure 7(b) 
and Figure 8(b)). Figure 7(a) and Figure 7(b) show the simulation results of the 3-phase IM under healthy 
condition and Figure 8(a) and Figure 8(b) show the simulation results of the 3-phase IM under open-phase 
fault. In Figure 7 and Figure 8 a step load torque equal to 5N.m at third second is applied. Moreover, in 
Figure 8 a phase cut-off fault is happened at starting and in phase “c”. The supply voltage values used in 
Figure 7(a), Figure 7(b), Figure 8(a) and Figure 8(b) are:  

 
Figure 7(a): 
Va=400*cos(120*pi*t) 
Vb=400*cos(120*pi*t-2*pi/3) 
Vc=400*cos(120*pi*t+2*pi/3) 
 
Figure 7(b): 
Va=400*cos(120*pi*t) 
Vb=350*cos(120*pi*t-2*pi/3)+20*cos(3*(120*pi*t-2*pi/3)) 
Vc=300*cos(120*pi*t+2*pi/3)+30*cos(5*(120*pi*t+2*pi/3)) 
 
Figure 8(a): 
Va=400*cos(120*pi*t) 
Vb=400*cos(120*pi*t-2*pi/3) 
  
Figure 8(b): 
Va=400*cos(120*pi*t) 
Vb=300*cos(120*pi*t-2*pi/3)+20*cos(4*(120*pi*t-2*pi/3)) 
 
Figure 7 and Figure 8 illustrate the waveform of stator a-axis current, first rotor bar current, 

electromagnetic torque and machine speed. It is observed from the stator and rotor current waveforms that 
machine currents are balanced and sinusoidal but with different amplitudes in healthy, faulty and balanced 
and unbalance sinusoidal and non-sinusoidal source conditions. Based on simulation results of Figure 8, it is 
concluded that, the oscillations of the speed and electromagnetic torque has increased considerably due to the 
open-phase fault in stator windings. Moreover, based on this Figure, the stator and rotor currents have 
increased at open-phase condition compared with normal condition. Moreover, in Figure 7(a) the motor 
speed reach to steady-state after  ̴ 0.2s, in Figure 7(b) the motor speed reach to steady-state after  ̴ 0.3s in 
Figure 8(a) the motor speed reach to steady-state after  ̴ 1.2s in Figure 8(b) the motor speed reach to steady-
state after  ̴ 1.4s  
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(a) (b) 
 

Figure 7. Simulation results of healthy 3-phase IM; (a): balanced supply, (b): unbalanced supply  
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(a) (b) 

                        
Figure 8. Simulation results of faulty 3-phase IM; (a): balanced supply, (b): unbalanced supply  
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4. CONCLUSION 
The research on fault detection and fault tolerant control of 3-phase IM often requires an accurate 

model. For this purpose, in this paper we have to elaborate an exact model which allows us to predict the 
performance of 3-phase IM under different conditions. The presented methods to model of 3-phas IM in this 
paper is based on winding function theory. This work has investigated the different operating conditions in 
squirrel cage 3-phase IM namely healthy and stator winding open-phase fault conditions under balanced and 
unbalanced power supply. Finally, Matlab simulation results are presented to show the dynamic behavior of 
3-phase IM under these conditions. 
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