
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 3, June 2015, pp. 586~598
ISSN: 2088-8708 586

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Application-level Communication Services for Development of
Social Networking Systems

Yunjin Lee*, Mingyu Lim**, Yangchan Moon**
* Division of Digital Media, Ajou University, Korea

** Departement of Internet & Multimedia Engineering, Konkuk University, Korea

Article Info ABSTRACT

Article history:

Received Jan 16, 2015
Revised Apr 21, 2015
Accepted May 6, 2015

 In this paper, we present our communication middleware (CM), which is
designed to reduce the effort of developing common communication
functionalities for social networking services (SNSs) in the client-server
model. SNS developers can apply the application-level communication
services of CM both to an SNS server and to client applications simply by
calling application programming interfaces (APIs) and configuring various
options related to communication services. CM was developed to enable SNS
developers to easily build fundamental services such as transmission of a
user-defined event, user membership and authentication management, friend
management, content upload and download with different numbers of
attachments, chat management, and direct file transfer. All of the
communication services also provide options that a developer can customize
according to his or her SNS requirements.

Keyword:

Client-server system
Communication middleware
Content transmission
Social networking service
User membership management

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Mingyu Lim,
Departement of Internet & Multimedia Engineering,
Konkuk University,
120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
Email: mlim@konkuk.ac.kr

1. INTRODUCTION

As wired and wireless networks have proliferated and become prevalent in our daily life, the
prevailing network infrastructure enables users to easily create, process, and share social content anywhere,
at any time, using various internet-enabled devices such as desktop PCs, laptop PCs, tablet computers, and
smartphones. Among the popular services in such an environment are social networking services (SNSs), and
the number of SNSs and their users are growing. Developers of existing SNSs have focused primarily on
implementing various content services, but they have overlooked the inefficiency of development caused by
redundantly providing common communication services. Although different SNSs have been developed
separately, they have a number of similar communication-related functions such as user membership,
authentication, event notification, sharing of text messages optionally having file attachments, and direct
content transmission.

In this paper, we propose our communication middleware (CM), which aims to support the
development of social networking services by reducing the effort required to develop communication
services. As an application-level communication framework, CM provides SNS developers with simple
application programming interfaces (APIs) and configuration options related to communication services such
as arbitrary event composition and transmission, user membership and authentication, friend management,
content sharing, chat management, and direct file transfer. Each service also provides options via CM
configurations or API call parameters to customize the services for a variety of possible application
requirements.

IJECE ISSN: 2088-8708

Application-level Communication Services for Development of Social Networking Systems (Mingyu Lim)

587

The remainder of this paper is organized as follows. In Section 2, we survey existing middleware
systems for SNSs and compare them with our approach. In Section 3, we briefly introduce CM and its
architecture. In Section 4, we describe the details of how CM options can be configured in SNS server and
client applications. After we present how a developer can integrate CM into server and client applications in
Section 5, we describe in detail how applications participate in a CM network in Section 6. In Section 7, we
present the CM support functions for communication services, and with Section 8, we conclude the paper.

2. RELATED WORK

There have been some past studies on middleware services for SNSs. Brooker et al. [1] presented a
middleware platform for developing social networking applications specifically for smartphone devices. With
their middleware, not only can a smartphone request a service but it can also host a service with the help of
surrogate clouds. One of the features for enhancing performance is an adaptive heartbeat mechanism that
dynamically controls the frequency of heartbeat messages between a smartphone and a surrogate according to
the service context. MobiClique [2] is mobile social networking middleware that directly disseminates
content among opportunistically connected devices in ad hoc social networks. Two distinguishing features of
MobiClique are that it does not depend on a centralized server and that it takes advantage of the social
network overlay to disseminate content in a peer-to-peer manner. MobiSoC [3] is a middleware system that
enables the development of mobile social computing applications and provides a common platform for
capturing, managing, and sharing various social states of physical communities. To augment the social state,
MobiSoC incorporates discovery algorithms for finding previously unknown geo-social patterns. Mokhtar et
al. [4] proposed a middleware service for pervasive social networking environments. With this middleware
service, a user can easily find other users who are socially or physically associated and can share common
interests with them; this research focused on social interaction among users. Karki et al. [5] introduced a
social networking approach for the mobile environment using PeerHood middleware. PeerHood [6] is a
network management middleware module that provides a communication environment for mobile devices to
communicate with each other directly, without any centralized server. The supported functionalities include
device and service discovery, service sharing, connection establishment, data transmission, active monitoring
of a device, and seamless connectivity.

In summary, existing SNS middleware approaches focus mainly on supporting their specific end-
user services such as location services and searches for friends. However, they overlook common
communication services, even though many SNS applications have duplicate and similar functionalities.

3. COMMUNICATION MIDDLEWARE (CM)

Our communication middleware (CM) is designed to support both synchronous and asynchronous
interactions of users, especially within SNS applications. The main role of CM in an SNS is to support an
easy and efficient way of developing an SNS application with high content accessibility. As middleware that
is located logically below the application layer, CM provides a developer with APIs for various
communication services such as communication architecture, user management, and event transmission.

We classify CM’s internal classes into three modules: a controller module, a model module, and a
normal module. The controller module contains classes that control and update internal values. The model
module consists of classes that maintain the global information of CM. The normal module consists of the
remaining classes, those that belong to neither the controller module nor the model module. Figure 1 shows
the main classes in each module. The role of each class is described in detail in [7].

To provide platform independence, CM was developed with Java using the Eclipse Integrated
Development Environment (IDE); thus, when compiled into Java bytecode, CM can run on any Java virtual
machine (JVM) on a variety of platforms, such as Windows, Linux, and Mac OS.

4. CM CONFIGURATION

We assume that a developer wants to develop client and server applications using CM. In order to
use CM, an application needs to import the CM library file and the Java database connectivity (JDBC) file,
which are provided as Java archive (JAR) files. In addition, configuration files are also needed, which are
provided with the CM JAR file. These configuration files must exist in the current working directory of the
application under development.

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 586 – 598

588

Figure 1. Communication middleware (CM) architecture

After the configuration files have been placed in the appropriate directory, the next step is to

configure the default values within the files. A server application must set the CM server configuration files,
the main one being the cm-server.conf file. This is a simple text file and can be edited by any text editor.
Because most configuration fields have already been set to default values, the only thing the developer needs
to do is to set the address of the default server. CM can configure multiple servers, consisting of the default
server and additional servers; the default server is the one to which all clients must always connect. Thus, a
server application using CM can be the default server or any of the additional servers; in the case of a single-
server system, the server application is the default server. In this paper, we will assume a single server.

In the server configuration file, the developer can set other communication-related policies
supported by the CM as well; the details are given below.
 SYS_TYPE: application type. A server application must set this field as “SERVER”, and a client as

“CLIENT” in the client-server model.
 COMM_ARCH: communication architecture. This field designates the communication architecture of an

application using CM. Possible values are “CM_CS” for the client-server model and “CM_PS” for the
hybrid model, the latter of which uses multicast communication in addition to the client-server model.

 LOGIN_SCHEME: user authentication policy. If the value is 0 (false), it means that the server will not
authenticate a user when it receives a login request, and the server CM will always accept the request. If
the value is 1 (true), the server will conduct the user authentication process.

 SESSION_SCHEME: multi-session policy. With this field, the developer can specify whether the
application will use one session or multiple sessions. If the field value is 0, CM will not use multiple
sessions but only a single default session; in this case, when a user logs in to a server, he or she
automatically joins this session and its default group. If the value is 1, the server application can
configure multiple sessions so that a user can select one of them to join.

 DOWNLOAD_SCHEME: transmission policy of SNS content. This field specifies how much SNS
content a server will transmit to a client. If the value is 0, CM adopts a fixed amount of SNS content,
according to the value of the DOWNLOAD_NUM field. If the value is 1, CM uses a dynamic
downloading scheme [8].

 DB_USE: database (DB) usage flag. This field sets whether a server application uses CM’s internal DB.
If the value is 0, the application will not use the CM DB. If the value is 1, the application will use the
CM DB, and the following additional DB information must be supplied: DB host, user name, password,
port number, and DB name.

 UDP_PORT: default port number of the server application. Using CM, applications can send a message
with a UDP connection. This field assigns the port number of the server application as the default UDP
connection, which is open when the server CM starts.

 FILE_PATH: default path for file transfers. CM refers to this path when performing file transfers. If a
file is requested, the server or client searches for the file in this file path; if a client receives a file, CM

IJECE ISSN: 2088-8708

Application-level Communication Services for Development of Social Networking Systems (Mingyu Lim)

589

stores the file in this file path. If a server receives a file, CM stores the file in a sub-directory of the
default path; the sub-directory is set to the name of the client that sent the file.

 SESSION_NUM: number of sessions. The value must be greater than or equal to 1 because CM uses at
least one session.

 SESSION_FILE#: name of session configuration file. “#” is an integer (starting with 1) that acts to
differentiate among sessions. In a session configuration file, the developer sets group information for
that session, such as group names and multicast addresses.

 SESSION_NAME#: session name. “#” is an integer (starting with 1) that acts to differentiate among
sessions. Because a session name in CM is an identifier, a unique name must be assigned.

Likewise, a client application must set a CM client configuration file (cm-client.conf). Unlike the
CM server configuration file, the CM client configuration file does not have many fields. The developer
needs to specify system type, default server information, UDP port number, and file path information.

5. APPLICATION INTEGRATION
When the developer has finished setting the CM configuration files, he or she is now ready to

develop client and server applications using CM. In order to initialize and start CM, both the server and the
client applications need to declare an instance of the CM stub class and set a CM event handler object.
Figure 2 shows sample code for a server application. Code for a client is nearly identical; the only difference
is that it declares the instance of the CM client stub class instead of the server stub.

Figure 2. Server application code

The registered event handler is called by CM whenever it receives a CM event so that an application

can be notified of event reception. The developer should define an event handler class that includes an event
process code. Figure 3 shows sample code for the server event handler. A client should define the event
handler in the same manner.

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 586 – 598

590

Figure 3. Server event handler code

Once the CM is initialized and starts to run, an application can call CM APIs provided through the

stub class.

6. PARTICIPATION IN CM NETWORK
A CM client must log in to the default server in order to interact with other CM nodes. For the login

process, the CM client stub provides the loginCM method. This method takes two parameters: user name and
password. When a client calls this method, the client CM sends a login request to the default server. When
the server CM receives the login request, it authenticates the requesting user according to the CM login
scheme specified in the CM server configuration file. If the server CM LOGIN_SCHEME value is 0, it does
not authenticate users, instead accepting every login request; in this case, the server and client applications do
not need to do anything further after the login request. If the server CM LOGIN_SCHEME value is 1, the
server application is responsible for authenticating the requesting user with its own authentication policy. To
this end, the server needs to capture the login request event in the event handler, authenticate the user, and
notify the user of the result. A simple authentication technique is to use the CM DB manager, which provides
an authentication method. To check whether the login request is successful, the client needs to capture the
reply event. If the result field of the reply event is 1, the login request has successfully completed; otherwise,
the login process has failed.

After the login process has completed, a client must join a session and a group to finish entering the
CM network. The session join process is different according to whether the server has adopted a single
session or multiple sessions in its configuration file. If there is a single session, the client CM automatically
requests to join the session as soon as the login request finishes; thus, the client application need do nothing
explicitly for joining a session. If there are multiple sessions available, the client needs to request session
information, choose one session, and request to join that session through the CM client stub. When a client
joins a session, it automatically proceeds to join the default group of that session.

7. CM COMMUNICATION SERVICES
For building an SNS application, CM provides various communication-related functionalities,

including event management, user management, friend management, SNS content management, chat, and file
transfer. In this section, we describe the roles of these services and how an application can use them.

IJECE ISSN: 2088-8708

Application-level Communication Services for Development of Social Networking Systems (Mingyu Lim)

591

7.1. Event Management
As CM handles every outgoing and incoming message as a type of CM event, an application needs

to create an appropriate event in order to send a message. For simplicity, CMDummyEvent is one of the event
classes supported by CM and has only one string field. This event is useful when the developer wishes to
design a simple event that contains the semantic in a string variable. To support the more flexible format of a
user-defined event, CM also provides the CM event class CMUserEvent. Using this event class, the
developer can define an event field with a field data type, a field name, and its value. Normal data types such
as int, long, float, double, char, String, and byte can be used in each event field. A created event field can be
added to the instance of the CMUserEvent class. A CMUserEvent event that has its own event fields is
identified by a string identifier, the name of which is also defined by the developer. The required methods to
set and get the identifier and event fields are described in Table A1 of Appendix A.

The setStringID method is used to define the ID of a user-defined event. The developer should note
that the data type of an ID is String rather than int. Although the pre-defined CM events use an ID of type int,
the CMUserEvent class uses the String type because it offers more readability for a user-defined event. The
ID of a user event can be retrieved by calling the getStringID method.

To set an event field in a user event, the setEventField method is used. This method requires three
parameters: data type, field name, and field value. For the data type, CM provides six primitive types that are
named as constant values, shown in Table 1.

The field data type and the field name parameters are required for identifying the different event
fields in a user event. The last parameter is the field value. This value must always be given as String type, no
matter which data type is used for the event field. In order to retrieve a field value, the getEventField method
can be called. This method requires the field data type and the field name as parameters and returns the value
of the corresponding event field. Because the return value is String type, the developer should transform it to
the original data type if needed.

Table 1. Field Data Types of CMUserEvent Event
Field data type Matching Java data type

CMInfo.CM_INT int
CMInfo.CM_LONG long
CMInfo.CM_FLOAT float

CMInfo.CM_DOUBLE double
CMInfo.CM_CHAR char
CMInfo.CM_STR String

The setEventBytesField method is used to set an event field that is an arbitrary byte stream. For
example, bytes read from a file can be an event field. This method requires three parameters. The first
parameter is the field name, identifying the event field of the byte stream. The second parameter is the
number of bytes in the byte stream. The last parameter is a byte array that contains the bytestream value. The
byte array can be retrieved by the getEventBytesField method. Requiring only the field name parameter, this
method returns the bytestream value as a byte array.

The example in Figure 4 shows how a CM client creates a sample user event. The ID of the event is
“testID”, and two event fields with different data types are set to the event. The client sends the created event
to the default server.

Figure 4. Example of CMUserEvent creation

A CM server or client application can send an event in any one of three transmission modes: one-to-

one, one-to-many, or one-to-all transmission. In one-to-one transmission, there is only one receiver. In one-
to-many mode, a sender can designate session members or group members as the recipients of the event. In

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 586 – 598

592

one-to-all mode, the event is sent to all logged-in users. Such transmissions are realized by three methods of
the CM stub: the send, cast (or multicast), and broadcast methods.

To receive a user-defined event, a CM application can capture a user event of the CMUserEvent
type, like other CM events. The example in Figure 5 shows how the default server captures the user event
sent by the previous example and prints out the field values in the server event handler.

Figure 5. Receiving a CMUserEvent event

7.2. User Management
The user management functions of CM include registration, deregistration, and user search. Because

user profile information should be stored in a DB, the developer must set the server configuration file to use
the CM DB (via DB_USE and other relevant fields) in order to use the user management support functions.
User management APIs are provided by the CM client stub, as shown in Figure 6. A CM client can send a
user management request to the default server, and the default server then processes the request using the CM
DB. The default server sends the result of the request as a CM event that can be captured by the client event
handler, as before.

Figure 6. Methods for user management

A user can be registered to CM by the registerUser method of the CM client stub. If a CM client is

connected to the default server, it can call this method. CM uses the registered user information to
authenticate a user when that user logs in to the default server. The registerUser method requires only two
parameters: user name (strName) and password (strPasswd). If the user name already exists in the CM DB,
the registration fails; if the user name is uniquely specified, the registration succeeds. The success status of
the registration request is assigned to the return code of the reply session event REGISTER_USER_ACK. If
the request is successful, the reply event also contains the registration time at the server. The details of the
REGISTER_USER_ACK event are shown in Table A2 of Appendix A.

A user can cancel his or her registration from CM by the deregisterUser method of the CM client
stub. If a client is connected to the default server, it can call this method. When requested, CM removes the
registered user information from the CM DB. Like the registerUser method, the deregisterUser method
requires only two parameters: a user name (strName) and password (strPasswd). If the given user name with
the correct password exists in the CM DB, the deregistration request is successful; otherwise, the request
fails. The success status of the deregistration request is assigned to the return code of the reply session event
DEREGISTER_USER_ACK, described in Table A3 of Appendix A.

IJECE ISSN: 2088-8708

Application-level Communication Services for Development of Social Networking Systems (Mingyu Lim)

593

A user can search for another user by the findRegisteredUser method of the CM client stub. If a
client is connected to the default server, it can call this method. When requested, CM provides the basic
profile of the target user, including such information as name and registration time. The findRegisteredUser
method requires only the user name parameter. If the given user name exists in the CM DB, the search
request is successful; otherwise, the request fails. The success status of the user search request is assigned to
the return code of the reply session event FIND_REGISTERED_USER_ACK, described in Table A4 of
Appendix A.

7.3. Friend Management

In an SNS application, it is common to support the management of friends for a user. CM makes it
easy for a client to add, delete, and get friend information. In order to use this service, the developer needs to
specify use of the CM DB, as in the user management case. Figure 7 shows a synopsis of the relevant
methods of the CM client stub.

Figure 7. Methods for friend management

A client can call the addNewFriend method to add a new friend. A client can add a user as its friend

only if the user name has already been registered to CM. If the friend is a registered user, the server adds it to
the friend table of the CM DB as a friend of the requesting user; otherwise, the request fails. In either case,
the server sends the reply event ADD_NEW_FRIEND_ACK with the result code to the requesting client to
inform it of the request result. A client can delete a friend by calling the removeFriend method, and the result
of the request, REMOVE_FRIEND_ACK, is sent to the requesting client. The event fields of both
ADD_NEW_FRIEND_ACK and REMOVE_FRIEND_ACK are identical and are described in Table A5 of
Appendix A.

Different SNS applications use the friend concept in different ways. In some applications, a user can
add another user to his or her friend list without needing the agreement of the target user. In other
applications, a user can add a friend only if the other user accepts the friend request. CM supports these
different policies of friend management by providing methods that request different user lists. The
requestFriendsList method requests the list of users whom the requesting user has added as friends,
regardless of their acceptance by the others. The requestFriendRequestersList method requests the list of
users who have added the requesting user as a friend but whom the requesting user has not as yet added as
friends. The requestBiFriendsList method requests the list of users who have added the requesting user as a
friend and whom the requesting user has added as friends. To illustrate, three different friend relationships
can be represented as a directed graph, shown in Figure 8.

Figure 8. Different friend relationships

A node represents a user, and a directed edge is a friend relationship. In the figure, there are three

users, A, B, and C. The existence of a directed edge from user A to user B means that A has added B as its
friend. If there are edges in both directions between two nodes, the corresponding users have added each
other, becoming bilateral friends. If users A, B, and C now call the above three methods, the result will be as
shown in Table 2.

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 586 – 598

594

Table 2. Results of Calling Three Friends-related Methods
Method name A result B result C result
requestFriendsList B A,C A
requestFriendRequestersList C N/A B
requestBiFriendsList B A N/A

When the default server receives the request for friends, requesters, or bilateral friends from a client,

it sends the corresponding user list as the RESPONSE_FRIEND_LIST,
RESPONSE_FRIEND_REQUESTER_LIST, or RESPONSE_BI_FRIEND_LIST event to the requesting client.
The three events have the same event fields, which are described in Table A6 of Appendix A. One of the
event fields is the friend list, but the meaning of the list differs according to the event ID. The friend list
contains a maximum of 50 user names. If the total number exceeds 50, the server will send the event more
than once.

7.4. SNS Content Management

Using the SNS content service of CM, a client application can request to upload and download SNS
content. For uploading or downloading content, a client can call the requestSNSContentUpload or
requestSNSContent method, respectively, in the CM client stub. Figure 9 shows a synopsis of these methods.
For persistence of SNS content, the CM default server stores the uploaded content in an SNS content table of
the CM DB. Therefore, the CM server must be set to use the CM DB. To request content upload or
download, a client must log in to the default server.

Figure 9. Methods for content upload and download

A client can call the requestSNSContentUpload method to upload a message to the default server.

This method requires six parameters. The first parameter, user, is the name of the user who uploads a
message. The second parameter, message, is a text message. The third parameter, nNumAttachedFiles, is the
number of attached files in this message; this parameter value must be the same as the number of elements in
the file path list specified as the last parameter. The fourth parameter, nReplyOf, indicates the ID number
(greater than 0) of the content to which this message replies; a value of 0 indicates that the uploaded content
is original rather than a reply. The fifth parameter, nLevelOfDisclosure, specifies the level of disclosure
(LoD) of the uploaded content. CM allows four levels of disclosure of content: LoD 0 opens the uploaded
content to public viewing, LoD 1 allows only those users who have added the uploading user as a friend to
access the uploaded content, LoD 2 allows only bilateral friends of the uploading user to access the uploaded
content, and LoD 3 makes the uploaded content private. The last parameter, filePathList, is the list of
attached files. Path names of attached files should be given as type ArrayList, and the number of array
elements must be the same as that specified as the value of the nNumAttachedFiles parameter.

If the server receives a content upload request, it stores the requested message with the user name,
the index of the content, the upload time, the number of attachments, the reply ID, and the level of disclosure.
If the content has files attached, the client transfers them separately to the server. After the upload task has
completed, the server sends the CONTENT_UPLOAD_RESPONSE event to the requesting client so that the
client can check the result of the request. The event fields of the CONTENT_UPLOAD_RESPONSE event are
detailed in Table A7 of Appendix A.

A client can request to download content by calling the requestSNSContent method. The first
parameter of this method, strUser, is the name of the requesting user. The second parameter, strWriter,
specifies a user who has uploaded content. For this parameter, the client can designate either a specific writer
name or a friend group. If the parameter value is a specific user name, the client downloads only content that
has been uploaded by the specified name and that is accessible by the requester. If the parameter value is
“CM_MY_FRIEND”, the client downloads content that was uploaded by the requester’s friends. If the
parameter value is “CM_BI_FRIEND”, the client downloads content that was uploaded by the requester’s
bilateral friends. If the parameter value is an empty string (“”), the client does not specify a writer name, and
it downloads all content that the requester is eligible to access. The last parameter, nOffset, is an offset from

IJECE ISSN: 2088-8708

Application-level Communication Services for Development of Social Networking Systems (Mingyu Lim)

595

the beginning of the requested content list, specifying that the client wants to download some number of SNS
messages starting from the nOffset-th most recent message. The nOffset value must be greater than or equal
to 0.

When the server receives the download request, it first determines how many SNS messages will be
sent. The number of messages is decided by the DOWNLOAD_SCHEME field of the server configuration
file. If this field is set to 0, the server uses the fixed maximum number of messages per request, according to
the value of the DOWNLOAD_NUM field of the configuration file. If DOWNLOAD_SCHEME is set to 1, the
server uses our dynamic downloading scheme, which determines the number of downloaded messages
according to the round-trip delay between the server and the requesting client. Each SNS message is then sent
to the client as a CONTENT_DOWNLOAD event, which can be captured in the client event handler. The
fields of the CONTENT_DOWNLOAD event are described in Table A8 of Appendix A. In most cases, the
server sends multiple CONTENT_DOWNLOAD events, corresponding to the number of SNS messages, and
then it sends the CONTENT_DOWNLOAD_END event to signal the end of the current download. This event
contains a field that gives the number of downloaded messages. A client can send another download request
by updating the offset parameter with the number of previously downloaded messages. The detailed event
fields of the CONTENT_DOWNLOAD_END event are described in Table A9 of Appendix A. If the content
has attached files, the client stores them separately in the default directory that is specified in the
FILE_PATH field of the client configuration file. The client should use the directory information from the
CMFileTransferInfo classes in order to access the downloaded files because the CONTENT_DOWNLOAD
event includes only the attached file names.

7.5. Chat Management

Another way clients frequently interact with other clients is via chat. A client can send a chat
message simply by calling the chat method of the CM client stub. This method takes two string parameters: a
target and a text message. Using the target parameter of the chat method, we can easily control the range of
recipients. The top level of the range is “/b”, which broadcasts the chat event to all logged-in users. The “/s”
value is used if a sender wants to chat with only those users who are in the same current session. The “/g”
value limits the recipients to the current group members. In the last case there is only one receiver, whose
name is designated after the “/” character as the first parameter of the chat method.

A CM application can receive a chatting event by capturing a pre-defined CM event in the event
handler, in the same manner as other events. There are two types of CM chat events. One is the
SESSION_TALK event of the CMSessionEvent class; a client can receive this event if it is logged in at least to
the default server. The other event is the USER_TALK event of the CMInterestEvent class; a client can
receive this event only if it joins a group. Tables A10 and A11 of Appendix A, respectively, describe the
detailed field information for these events.

7.6. File Transfer Management

CM applications that connect directly to each other can exchange a file using the CMStub class,
which is the parent class of the CMClientStub and CMServerStub classes. For example, in client-server
architecture, a client can push or pull a file to or from a server by calling the pushFile or requestFile
methods. In order to use the file transfer service, a CM application must set a directory to be the file
repository. When CM is initialized by an application, the default directory is configured in the configuration
file (by the FILE_PATH field). If a file is requested, the server or client searches for the file in this file path;
if a client receives a file, CM stores the file in this file path. If a server receives a file, CM stores the file in a
sub-directory of the default path; the sub-directory is set to the name of the client that sent the file. An
application can change the default file path by the setFilePath method.

In pull mode, a CM application requests a file from another remote CM application. For example, a
CM client can request that a CM server send a file. A file is requested by the requestFile method. The
requestFile method requires two parameters: the requested file name and the name of the file owner. In push
mode, on the other hand, a CM application can send a file to another remote CM application. A file is pushed
by the pushFile method. Like the requestFile method, the pushFile method requires two parameters: the path
name of the file to be sent and the name of the receiver.

8. CONCLUSION
In this paper, we have introduced our communication middleware (CM), with which a developer can

easily implement common communication services for SNS applications in a client-server architecture. The
CM configuration enables an SNS server to specify a policy for user authentication, session and group
organization for user interactions, and a policy for SNS content download. Using the CM APIs, it is easy for

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 586 – 598

596

an SNS client to compose and send a user-defined event in different transmission modes, request user
registration and authentication, add and remove friend lists according to different concepts of friend
relationships, upload and download SNS content with different levels of disclosure, send a chat message to
different ranges of recipient groups, and push or pull a file to or from a server. As the CM communication
services are fundamental components for various interactions of distributed nodes, these services can also be
applied in the development of other distributed applications.

For future work, we plan to add more communication services, such as cloud storage and location
detection, in order to enrich the range of CM support, particularly for mobile SNSs. We are also researching
an adaptive content transmission and prefetching scheme in order to reduce delays in accessing high-volume
and high-quality social content under poor network conditions.

ACKNOWLEDGEMENTS

This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea,
under the ITRC (Information Technology Research Center) support program (IITP-2015-H8501-15-1004)
supervised by the IITP (Institute for Information & communications Technology Promotion).

REFERENCES
[1] D. Brooker, et al., “Middleware for Social Networking on Mobile Devices”, in 21st Australian Software

Engineering Conference, April 6-9, 2010, pp. 202-211.
[2] A. Pietilainen, et al., “MobiClique: Middleware for Mobile Social Networking”, in 2nd ACM Workshop on Online

Social Networks, August 17, 2009, pp. 49-54.
[3] A. Gupta, et al., “MobiSoC: A Middleware for Mobile Social Computing Applications”, Journal of Mobile

Networks and Applications, vol. 14, pp. 35-52, February 2009.
[4] S. Mokhtar, et al., “A Middleware Service for Pervasive Social Networking”, in International Workshop on

Middleware for Pervasive Mobile and Embedded Computing, December 2009, Article No. 2.
[5] B. Karki, et al., “Social Networking on Mobile Environment”, in ACM/IFIP/USENIX 9th International Middleware

Conference, December 1-5, 2008, pp. 93-94.
[6] J. Porras, et al., “Peer-to-Peer Communication Approach for A Mobile Environment”, in 37th Annual Hawaii

International Conference on System Sciences (HICSS), 2004.
[7] M. Lim, “Improving Architecture of Communication Middleware for Social Networking Services”, Technical

Report, CCSLab, Konkuk University, 2014.
[8] M. Lim, “Adaptation of Content Transmission for Social Network Systems”, International Journal of Information

Processing and Management (IJIPM), vol. 4, pp.60-67, September 2013.

BIOGRAPHIES OF AUTHORS

Yunjin Lee is an Associate professor of in the Division of Digital Media at Ajou University.
She received her BS degree in 1999 and her PhD degree in 2005, all in Computer Science and
Engineering from POSTECH in Korea. Her research interests include nonphotorealistic
rendering, 3D mesh processing, and data compression.

Mingyu Lim is an Associate Professor at the Department of Internet and Multimedia
Engineering, Konkuk University, Korea from the year 2009. Before joining Konkuk University,
he was a senior researcher at MIRALab, University of Geneva, being involved in various
research activities on networked virtual environments and ubiquitous computing systems. He
received his PhD in Computer Science in February 2006 at ICU, Korea. His major research field
is supporting scalability in networked virtual environments. His current research activities are
focused on communication middleware, event transmissions, and content distribution in
distributed systems and Internet of Things.

IJECE ISSN: 2088-8708

Application-level Communication Services for Development of Social Networking Systems (Mingyu Lim)

597

Yangchan Moon is a Ph.D. student at the Department of Internet and Multimedia Engineering,
Konkuk University, Korea from the year 2015. He received his BS degree in 2012 and his
Master degree in 2015, all in Internet and Multimedia Engineering from Konkuk University in
Korea. His research interests include distributed systems, communication middleware, and
content sharing and prefetching systems.

Appendix A. CM Events for Notification to a Client

Table A1. Methods of CMUserEvent Class.
Event type CMInfo.CM_USER_EVENT
Methods Usage

void setStringID(String id) Set a String ID of this event
void setEventField(int type, String fName, String fValue) add an event field

void setEventBytesField(String fName, intbyteNum, byte[] bytes) add an event field which is a byte array
String getStringID() Get a String ID of this event

String getEventField(int type, String fName) Get the value of an event field
byte[] getEventBytesField(String fName) Get the byte array of an event field

Table A2. REGISTER_USER_ACK Event.
Event Type CMInfo.CM_SESSION_EVENT

Event ID CMSessionEvent.REGISTER_USER_ACK
Event field Field Data type Field definition Get method

Return code int Result code of the request
1: succeeded
0: failed

getReturnCode()

User name String Requester user name getUserName()
Creation time String Time to create the user at DB getCreationTime()

Table A3. DEREGISTER_USER_ACK Event.
Event Type CMInfo.CM_SESSION_EVENT

Event ID CMSessionEvent.DEREGISTER_USER_ACK
Event field Field Data type Field definition Get method

Return code Int Result code of the request
1: succeeded
0: failed

getReturnCode()

User name String Requester user name getUserName()

Table A4. FIND_REGISTERED_USER_ACK Event.
Event Type CMInfo.CM_SESSION_EVENT

Event ID CMSessionEvent.FIND_REGISTERED_USER_ACK
Event field Field Data type Field definition Get method

Return code Int Result code of the request
1: succeeded
0: failed

getReturnCode()

User name String Requested user name getUserName()
Creation time String Time to create the user at DB getCreationTime()

Table A5. ADD_NEW_FRIEND_ACK and REMOVE_FRIEND_ACK Events.
Event Type CMInfo.CM_SNS_EVENT

Event ID CMSNSEvent.ADD_NEW_FRIEND_ACK
CMSNSEvent.REMOVE_FRIEND_ACK

Event field Field Data type Field definition Get method
Return code int Result code of the request

1: succeeded; 0: failed
getReturnCode()

User name String The name of a requesting user getUserName()
Friend name String The name of a friend to add or remove getFriendName()

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 586 – 598

598

Table A6. Response Events of the Three List Requests.
Event Type CMInfo.CM_SNS_EVENT
Event ID CMSNSEvent.RESPONSE_FRIEND_LIST

CMSNSEvent.RESPONSE_FRIEND_REQUESTER_LIST
CMSNSEvent.RESPONSE_BI_FRIEND_LIST

Event field Field Data type Field definition Get method
User name String The name of a requesting user getUserName()
Total friend number int Total number of requested users getTotalNumFriends()
Friend number int Number of requested users in this event getNumFriends()
Friend list ArrayList<String> List of requested user names getFriendList()

Table A7. CONTENT_UPLOAD_RESPONSE Event.
Event Type CMInfo.CM_SNS_EVENT

Event ID CMSNSEvent.CONTENT_UPLOAD_RESPONSE
Event field Field Data type Field definition Get method

Return code int Result code of the request
1: succeeded; 0: failed

getReturnCode()

Content ID int An index of the uploaded content in a content table getContentID()
Date and time String Date and time of the upload getDate()
User name String Requesting user name getUserName()

Table A8. DOWNLOAD_CONTENT Event.
Event Type CMInfo.CM_SNS_EVENT

Event ID CMSNSEvent.CONTENT_DOWNLOAD
Event field Field Data type Field definition Get method

User name String Requester name getUserName()
Offset int Requested content offset getContentOffset()
Content ID int Content ID getContentID()
Date and time String Written date and time of the content getDate()
Writer name String Writer name of the content getWriterName()
Text message String Text message of the content getMessage()
No.of attachments int Number of attached files getNumAttachedFiles()
Reply ID int Content ID to which this message replies (0 for no reply) getReplyOf()
Level of disclosure int Level of disclosure of the message

0: open to public
1: open only to friends
2: open only to bi-friends
3: private

getLevelOfDisclosure()

File name list ArrayList<String> The list of attached file name getFileNameList()

Table A9. DOWNLOAD_CONTENT_END Event.
Event Type CMInfo.CM_SNS_EVENT
Event ID CMSNSEvent.CONTENT_DOWNLOAD_END

Event field Field Data type Field definition Get method
User name String Requester name getUserName()
Offset int Requested content offset getContentOffset()
Content ID int Content ID getContentID()
Download number int Number of downloaded SNS messages getNumContents()

Table A10. SESSION_TALK Event.
Event Type CMInfo.CM_SESSION_EVENT
Event ID CMSessionEvent.SESSION_TALK

Event field Field Data type Field definition Get method
User name String Name of the sending user getUserName()
Text message String A chatting message getTalk()
Session name String A current session of the sending user getHandlerSession()

Table A11. USER_TALK Event.
Event Type CMInfo.CM_INTEREST_EVENT
Event ID CMInterestEvent.USER_TALK

Event field Field Data type Field definition Get method
User name String Name of the sending user getUserName()
Text message String A chatting message getTalk()
Session name String A current session of the sending user getHandlerSession()
Group name String A current group of the sending user getHandlerGroup()

