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 Denoising of images got corrupted by addition of noise signals (generated by 
no single reason) has always a subject of interest for researchers. This paper 
proposes and classifies the efficiency of an algorithm based on bivariate 
shrinkage further optimized by Particle Swarm Optimization (PSO).The 
estimator for undecimatedfilterbank which incorporate the adaptive subbands 
thresholding further represented with singal threshold based on denosing 
performs. The paper evaluates performance of medical image denoising by 
calculation of PSNR, MSE, WPSNR and SSIM. The simulation results based 
on testing the model at MATLAB 2010A platform shows significant 
enhancement in mitigation of Gaussian noise, speckle noise, poisson noise 
and salt & pepper noises from experimental data. 
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1. INTRODUCTION  

Medical information, composed of images, physiological signals and other clinical data, has become 
an essential part of a patient’s care, during screening, in the diagnostic stage and in the treatment phase. Over 
the past few decades, there has been a rapid development in information technology (IT) & Medical 
Instrumentation which has lead & facilitated the growth of digital medical imaging. This growth has mainly 
focused on Computed Tomography (CT), the different digital radiological processes for vascular, nuclear 
medical imaging with Single Photon Emission Computed Tomography (SPECT), cardiovascular and contrast 
imaging, mammography, Magnetic Resonance Imaging (MRI), diagnostic ultrasound imaging, and Positron 
Emission Tomography (PET). All these processes are producing increasing quantities of images. These 
images are typically different from other photographic images because they reveal internal framework as 
opposed to an image of external surfaces. 

In view of this, survey of literature has been done in the area of tomography, wavelets, multi 
wavelets and various denoising techniques.. A number of researchers have published image denoising 
literature [9-25] there is tremendous research that is going on, for better image quality throughout the globe. 
The thresholding is undertaken on the pixel by pixel basis [26–28] or by considering theinfluence of 
neighborhood wavelet coefficients on the wavelet coefficients to be thresholded. Cai and Silverman [29] 
proposed a thresholding method which takes the immediate neighboring coefficients into account to form the 
threshold. The idea of neighboring wavelet thresholding was extended by Chen and Bui [30] in to the multi 
waveletscheme. It was proved that neighbor multi wavelet denoising outperforms the neighbor single wavelet 
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denoising [31] for some test images and real time signals. Chen et al. [32] proposed a noise suppression 
method which considers asquare neighborhood window to customize the wavelet filter threshold for image 
denoising. These methods removethe noises from the images effectively. Crouse et al [33] developed a 
framework for statistical signal processing basedon wavelet domain hidden markkov models (HMM). 
Kingsbury [34] proposed the 2D dual tree complex wavelet which satisfies these requirements effectively. 
But this method is less efficient for motion estimation since the motion information is related to the 
coefficientphase, which is nonlinear function of estimation.Aim of the paper is to emphasize the problems 
and solutions in relation to tomographic images which arise in medical field in view of its increasing 
importance in the present day requirements. 
 
 
2. RESEARCH METHOD  
The proposed methodology is basically contains two functional steps  
1. generation of initial element 
2. determination of fitness function 

 
A. Generation of Initial Element 
In the first process, nat initial atom, each part of element nE are generated. The set representation of initial 
elements are given as  
Ril {r0, r1, r2… rnE – 1}il;0≤l ≤nat−1 
Where {R}il  is the lth element generated to obtain windows that are closer to the ithwindow of the original 
noisy image. Each atom of the generated element ril k{R}il; 0≤k≤nE-1, is an arbitrary integer generated 
within the interval [0, nw-1] provided that all the atoms of each element has to satisfy the condition 
r0≠r1≠…≠rnE-1. 
 
B. Determination of Fitness Function 
A fitness function decides whether the generated element are fit to survive or not, that can be given as 

 

 
 
Wher, fi(l) is the fitness of thelthelement generated for the ith window &L2ilk is the L2 norm distance 
determined between the wi& the window indexed by the kth atom of the lth element. The L2ilk is determined as 
follows 
 

 
 

Where, W’rilk is the window indexed by rilk that is converted to multi-wavelet transformation domain as done 
in (4) and (5). 
 
The procedure for wavelet multi resolution transform in is described below 
Step 1: At level j 2-D real image is convolved with scale and wavelet filters along the rows of 2-D image. 
Step 2: The results obtained after step 1 are convolve again with scale & wavelet filters along the columns of 
the 2-D image. 
Step 3: Then filter is sub-sampled by a factor of two. 
Step 4: At level j the approximation is considered as the input to the next level j+1. This procedure is 
followed for all the levels. 
 
C. Bivariate Shrinkage Function Model (BFM): 

Bivariate shrinkage function model (BFM) is a new modest non-Gaussian bivariate probability 
distribution function to perfect the statistics of wavelet coefficients of natural images. The model arrests the 
dependence amongst a wavelet coefficient & its parent. Using Bayesian estimation theory we develop from 
this model a modest non-linear shrinkage function for wavelet denoising, which take a broad view of soft 
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thresholding approach. The new shrinkage function, which hangs on both the coefficient & its parent, 
produces improved results for wavelet-based image denoising. 
Let us consider that w2 symbolize the parent of w1 (w2 is the wavelet coefficient at the identical spatial 
position as w1, but then again at the next coarser scale). Then 
 

y = w + n (4) 
 

Where w = (w1, w2), y = (y1, y2) & n = (n1, n2). The noise standards n1, n2 are iid zero-mean Gaussian with 
variance\sigma n2. 
The standard MAP estimator for w given the noisy observation y is: 
 

 
 
The equation for wavelet coefficient w1 is given as 
 

 
Let consider that 
 

 (5) 
 
Then we denote the bivariate shrinkage function model (BFM) BFM=(Yc, Yp, n, , T), where Ycis the 
coefficient of each sub-band Yp is its parent of the coefficient, nis the variance of noisy signal, is the 
marginal variance &T is the threshold value. 
 
D. Methodology for Window Selection in Image Denoising: 
Let, first discuss the already present window selection methodology used in the technique, here, is a brief 
description. 
Let us assume that, I (x, y) be the unique CT image and IAWGN (x, y) be the image corrupted by Additive 
White Gausian Noise, where 0 ≤x ≤M−1, 0 ≤y ≤N−1. The IAWGN is applied to the first stage of the proposed 
technique, window-based thresholding. The window selection procedure described here is one of the key 
mechanisms of the first stage of processing of the CT image denoising technique.  
In the procedure, a carbon copy of the IAWGN, labeled as I’AWGN, is generated. IAWGN and I’AWGN, a window of 
pixels are considered &set to a multi-wavelet transformation. The process of extracting the windows from the 
image IAWGN is given in the Figure 1. 
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Figure 1. Process of extracting the windows from the given image IAWGN 
 
 
In the Figure 1, w indicates the window of pixels pulled out from the image IAWGN & S size is the step size of 
the window. This is carried out all over the image and so wjwindows are achieved, where, 0≤i≤nw-1. By the 
same way, it is also executed in the image IAWGN and receives wj, 0≤j≤nw-1, where, nwsignifies number of 
windows. Then, the obtained window of pixels are transformed to multi wavelet transformation domain as 
follows 
 

Wi (a,b) = FGHM(a,b).wi(a,b).FT
GHM(a,b) [30](6) 

Wj (a,b) = FGHM(a,b).wj(a,b).FT
GHM(a,b)[50](7) 

 
Where, 0 ≤a ≤m −1, 0 ≤b ≤n −1 and mXn indicates the window size. In (6) and (7) FGHM is the concatenated 
filter coefficient of GHM multi-wavelet transformation, Wiand Wj are wiand wjin multi-wavelet domain, 
respectively. 
For each Wi, Wjthat are nearer to Wi are selected founded on L2 norm distance (L2ij), which can be calculated 
using (9), 
 

 (8) 
 
Using the L2ij, the Wjwindows that are nearer to the Wi, W

‘
L2ijcan be demarcated as W ‘

L2ij= WL2ij-, where, 
WL2ijis given as  

 

 (9) 
 
Every ithwindow sets in W ‘

L2ij are organized in ascending order based on their corresponding L2ij. From the 
sorted window set, nc number of windows are chosen (for every Wi) and the remaining are omitted out, which 
leads to receive W ‘L2ik, where, 0≤k ≤nc−1. 
 
 
3. RESULTS AND ANALYSIS  

With this algorithm subjected to various type of image corrupted by well known type of noises it is 
being found from the table 2 that all the images has shown a quite improvement in when corrupted by either 
type of above mentioned noises.Table 1 shows the comparison of our obtained data with the results from 
WT-TNN approach with db8 and bior6.8 [44] it can be seen that our proposed method has performed well in 
removing the different type of noises. 
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(a)       (b)         (c) 

 
Figure 2. Image (a) original image, (b) Image with Gaussian noise (c) denoised image 

 
 

Image denoising using bivariate shrinkage function and which are in turn subjected to Particle 
Swarm Optimization (PSO) has shown a much significant improvement in salt and pepper noise. Nearly 50% 
improvement is seen in PSNR, whereas MSE has decreased to nearly 97% after adaptive filters.  These 
improvements has helped to achieve better WPSNR between 29% to 40% improvement in various image 
type.Apart from salt and pepper noise, gaussion noise, speckle noise & poisson noise has shown 
improvement to some extent but salt and pepper has stood apart from all the noises. 

 
 

Table 1. Comparative performance of proposed approach with db8 and bior 6.8 wavelet filter 
Set of results from WT-TNN approach with db8 

wavelet filter[44] 
Set of results from WT-TNN 

approach with bior6.8[44] 
Proposed with PSO 

Image Noise Std. dev. PSNR Noise Std. dev. PSNR Noise Std. dev. PSNR 

Leena 10 34.29 10 34.34 10 35.32 
Barbara 10 31.76 10 31.81 10 34.3 

Ultra Sound 10 33.86 10 34.64 10 33.85 

 
 

Table 2. Performance comparision of proposed methodology and its effect on various noise and image type 
Image-Barbara PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 36.9248 13.2008 42.1271 0.947244 0.225509 

GAUSSIAN NOISE 34.3078 24.1155 37.7427 0.88342 0.232728 

SALT & PEPPER NOISE 46.2095 17.2363 48.8016 0.860089 0.218133 

SPECKLE NOISE 34.164 24.9279 39.123 0.918154 0.248614 

 
Image-Leena PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 37.8394 10.694 43.088 0.953933 0.206691 

GAUSSIAN NOISE 35.3205 19.1 38.5271 0.890729 0.212508 

SALT & PEPPER NOISE 47.0804 16.27364 48.9249 0.834926 0.213186 

SPECKLE NOISE 34.7653 21.7047 39.6693 0.923108 0.184577 
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Image-CT Scan PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 35.0613 20.2743 40.7958 0.954622 0.228942 

GAUSSIAN NOISE 34.5149 22.9926 38.1528 0.789865 0.208839 

SALT & PEPPER NOISE 48.8002 18.8571 43.8698 0.828432 0.222314 

SPECKLE NOISE 33.7675 27.3103 38.7148 0.949395 0.220501 

 
Image-Ultrasound PSNR MSE WPSNR SSIM TIME 

POISSON NOISE 34.8795 21.1415 40.5439 0.961004 0.231137 

GAUSSIAN NOISE 33.8518 26.7853 37.4314 0.767568 0.211641 

SALT & PEPPER NOISE 48.5434 20.9093 42.8133 0.840776 0.196596 

SPECKLE NOISE 33.3418 30.1235 37.8567 0.950667 0.225587 

 
 
3. CONCLUSION  

In this paper, new technique has been presented. The proposed Bivariate and PSO based technique 
approach not only computationally efficient but also gives better performance indicated by performance 
indices PSNR, MSE, WPSNR, SSIM and time. Finally, it is concluded that the proposed approach in terms 
of PSNR, WPSNR improvement is outperformed.The proposed technique optimize the possibility of low 
pass coefficient from each subbandbased on amount of shrinkage is related to signal dependent noise 
variance.In this paper a new technique is proposed to mitigate the noise in images. According to results the 
novel Bivariate technique optimized by Particle Swarm Optimization is computationally efficient and 
performs significantly superior in performance indices indicated by PSNR, MSE, WPSNR, SSIM and time. 
Finally, we can conclude that in terms of WPSNR and PSNR the proposed approach is outperformed. 
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