
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 3, June 2015, pp. 409~420
ISSN: 2088-8708 409

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Text Preprocessing using Annotated Suffix Tree with Matching
Keyphrase

Ionia Veritawati*, Ito Wasito**, T. Basaruddin**
* Department of Informatics, Pancasila University, Indonesia

** Department of Computer Science, University of Indonesia, Indonesia

Article Info ABSTRACT

Article history:

Received Dec 18, 2014
Revised Apr 29, 2015
Accepted May 14, 2015

 Text document is an important source of information and knowledge. Most
of the knowledge needed in various domains for different purposes is in form
of implicit content. A content of text is represented by keyphrases, which
consists of one or more meaningful words. Keyphrases can be extracted from
text through several steps of processing, including text preprocessing.
Annotated Suffix Tree (AST) built from the documents collection itself is
used to extract the keyphrase, after basic text preprocessing that includes
removing stop words and stemming are applied. Combination of four
variations of preprocessing is used. Two words (bi-words) and three-words
of phrases extracted are used as a list of keyphrases candidate which can help
user who needs keyphrase information to understand content of documents.
The candidate of keyphrase can be processed further by learning process to
determine keyphrase or non keyphrase for the text domain with manual
validation. Experiments using simulation corpus in which keyphrases are
determined from them show that keyphrases of two and three words can be
extracted more than 90%. Using real corpus of economy, keyphrases or
meaningful phrases can be extracted about 70%. The proposed method can
be an effective way to find candidate keyphrases from collection of text
documents which can reduce non keyphrases or non meaningful phrases
from list of keyphrase candidates and can detect keyphrases separated by
stopwords.

Keyword:

2-Means Clustering
Annotated Suffix Tree
Keyphrase
Preprocessing
TF-IDF

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Ionia Veritawati,
Department of Informatics,
Pancasila University,
Srengseng Sawah Street, Jagakarsa, Jakarta, Indonesia
Email: ioniaver11@gmail.com

1. INTRODUCTION

Text used as data has increased rapidly in many domain areas. It becomes a problem when a person
or a department needs the content of text or document collection as information for their purposes. A big text
data causes difficulty in knowing the content of the text or document collection. The collections (corpus)
have implicit information which can be extracted to give meaningful information. Accurate information
requires processing of the text as an unstructured data and physically as documents.

Keyphrase (KP) is a meaningful phrase consisting of one or more words which can be extracted
from a document collection using some different methods. KEA, called Automatic Keyphrase Extraction, is a
method for extracting keyphrases using Naive Bayes [1]. Some other methods use Semantic Analysis [2]
lexical chains [3], and a ranking approach by SVM [4]. Keyphrasescan also be extracted using thesaurus
database as compound terms [5] and extracted using entropy and transition point approach as index term [6].

Usually, keyphrases are features of text collection in which their numbers are calculated based on
their presence for values in the features. Keyphrases have been used in many applications such as for

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 409 – 420

410

determining index of a digital library [7]; for supportinga text-based decision system in financial sequence
prediction [8] andquestion answering system [9]; for ranking topical keyphrases from content-representative
document titles [10]; for clustering document [11] and text from structured data [12]; for applying in query-
oriented summarization [13], information extraction [14] [15], text categorization [16] and information
retrieval [17].

Text Preprocessing as an initial process has been used in many experiments such as for exploring
the impact of preprocessing on text classification [18]; for compressing natural language [19]; and for
selectingfeature [20]. Uysal [18] has compared a few steps of preprocessing.In this paper, text preprocessing
is combined by Annotatted Suffix Tree (AST), which consists of collection of two words and frequencies
from a document. The AST in this paper is applied to match and score a list of inputted keyphrases and also
to extract keyphrases automatically if there are no input keyphrases to be matched.

This paper consists of four sections. The second section describes text preprocessingand methods.It
includesconcept of Annotated Suffix Tree (AST), algorithm of AST building, algorithm of AST matching
andalgorithm of automatic keyphrase extraction that combines text preprocessing and AST. This section also
explains the methodology of experiments. The third section presents results and analysis of results from the
experiments. The final sectioncontainsconclusions and future work.

2. PREPROCESSING AND METHODS

2.1. Text Preprocessing

Text Preprocessing is a systematic and basic process applied in a collection of text documents
related to removalof meaningless characters, unimportant words and elimination suffix or prefix from a word
[18]. The result of text preprocessing is a list of meaningful words which can represent the content of a
document or a collection of documents. The result list will be used in variousapplications, which are
described in previous section.

Meaningless characters in text or document are comma, point, question tag and others. Removal of
the characters and also the change the capital letters into small characters make the next step of preprocessing
easier and is followed bythe removal unimportant words (stop words) such as conjunction and adverb.The list
of all the words is collected first and then the unimportant words found are removed from the document
collection. The next process continues by using a stemmer which is applied to eliminate prefix or suffix from
a word that may form verb or noun. The stemmed words can be used as features of documents. Frequency, as
a score of each feature, is arranged in an element of score matrix between documents (columns) and
keyphrases (rows). The score matrix is normalized using TF-IDF calculation. The normalized keyphrase
scores in the matrix or table are important to find content domain of the document collection and also helpful
when they are used for querying or clustering documents.

2.2. Setting of Proposed Text Preprocessing

Text preprocessing in this paper has four settings shown in Table 1. The purpose of using different
settings are to find the best result of keyphrase matching process which will be described in section 2.4.

Table 1. Setting of Proposed Text Preprocessing

Each of the four settings (table 1) is applied to an original corpus. Preprocessing results of the four

settings are four collections of documents (corpus) appropriate with each setting. The settings can be
expressed asݔ, ; where x is a word, i is index of removal of stop words (table 1, column 2), and j is index of
stem (table 1, column 3), which have different states in each setting. Index values of ݔ, include“not
removing stopwords” (i = 0) or “removing” them (i=1), and “not using stemmer” (j=0) or “using” it (j=1).
For example, ݔ,ଵmeans the word x will not be removed if it is a stop word and the word x will be stemmed.

To find a keyphrase of two or three words from a corpus, usually the process is sequential, using an
array structure to arrange the words (2-gram or 3-gram from N-gram method), besides using methods
described in previous section. In this paper, a different method for matching and extracting keyphrases of

Setting Remove Stop Words (i) Stem (j)
(1) (2) (3)
1 No (0) No (0)
2 No (0) Yes (1)
3 Yes (1) No (0)
4 Yes (1) Yes (1)

IJECE ISSN: 2088-8708

Text Preprocessing using Annotated Suffix Tree with Matching Keyphrase (Ionia Veritawati)

411

single word until three words using Annotated Suffix Tree (AST) is proposed. Each of four preprocessed
corpus from setting model data (table 1) is used to build four various tree structures as AST and each of AST
is used in the processes of keyphrase matching and automatic keyphrase extraction. The specific methods
will be explained in the next section.

2.3. Annotated Suffix Tree

Suffix tree in general is a tree that consists of characters as suffix of a string (collection of
characters) [21]. The root node and sub-trees of suffix tree do not have value. Value is put in each vertex of
sub-tree. For example, the word “bananas” consist of suffixes as follows: “bananas”, “ananas”, “nanas”,
“anas”, “nas”, “as”, “s” and “$” as an end character. Each suffix is arranged in vertex of the suffix tree. It is
usually used for string matching. Ukkonen’s online algorithm [21] is proposed to build the suffix tree and the
step using prefix rather than suffix. For example, prefixes of “bananas” are as follows: “b”, “ba”, “ban”,
“bana”, “banan”, “banana”, “bananas”.

Annotated Suffix Tree (AST) is a different concept of suffix tree proposed by Pampapathi [22] for
spam filtering. Pampapathi developed AST as a structure of a word that consists of characters and its
frequencies which are put at nodes of treerather than string. AST is also used to match string patternsofspam
words. Each of suffix tree models above is used for a single word.

Figure 1. The Proposed AST Illustration

In this paper, the proposed Anottated Suffix Tree (AST) algorithm is adopted from Ukkonen

concept in developing online suffix tree and Pampapathi [22] in arranging nodes of tree as the place for
putting characters. Figure 1 shows the AST illustration of bi-words. The AST proposed is arranged to put a
bi-words, not a character, and its frequency in a node. The depth of the tree has two levels. The number of all
nodes in level 1 of the tree is the total number of unique words in the document developed as AST, and the
number of frequency at each node of that level is the total number of words.

Read a document D(i) has been Preprocessed
Split text of D(i) into Array of words (1..number of words)
Create root of tree
For j= 1 .. (number of words -1)
{Insert word(j), word (j+1) into tree}

Traverse level 1,
If word(j) = node1 add frequency of node1 {level 1}

If node2 (subtree) of node1 = word(j+1)
add frequency of node2 {level 2}
Else Insert word(j+1) as a new node2 (subtree) of node1 at level 2

Else
Insert word(j) as a new node1 (subtree) of root at level 1
Traverse level 1,
if there is no node1 == word(j+1)

Insert word(j+1) as a new node1 (subtree) of root at level 1

Figure 2. AST Development Algorithm

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 409 – 420

412

The proposed algorithm to develop AST is described in figure 2. The main process puts every two
words of a text document into AST at level one and two. If the first word that is going to be inserted has
existed at a node of level one of the tree, the node will split into a new sub-tree to insert the second word and
its frequency.

2.4. Matching Process

Matching process algorithm (figure 3) in this paper is the process of scoring a list of inputted
keyphrases into a document collection using AST developed from each document.The process of matching
and extracting keyphrases can be done by traversing AST and matching every word in nodes with the
inputted keyphrases as word or bi-words one by one, and count the frequency of occurrences of respective
matching words.

Input a Keyphrase (KP) will be matched with AST
Score=0
Split KP into words (1.. number of KP)
For j= 1 .. (Nword-1)
{matching and scoring word(j), word (j+1) with AST}

Traverse level 1,
If word(j) = node1 {level 1}

Traverse level 2
If node2 (subtree) of node1 = word(j+1) {level 2}
score=score + frequency of node2

score_matching = score / (number of KP -1)
Insert score_matching as an element table of document vs KP

Figure 3. Keyphrase Matching Algorithm using AST

Formulation for keyphrase (KP) matching score in the process of algorithm (figure 3) is as follows:

Score of KP=
(weighted KP * frequency in node level 2/(number of KP – 1) (1)

In this experiment, the weights of word are equal to 1.

Preprocessing documents collection Di [i=1.. number of documents]
(option : remove stop words + stem)

Preprocessing Keyphrases List - KP [1.. number of KP]
(option : stem)

For i = 1 ..number of documents
Develop AST(i) of D(i)
For j = 1 ..number of KP

Score = Matching between AST(i), KP(j) (figure 3)
Insert score into table T1(i,j) {single word}
Insert score into table T2(i,j) {bi-words / three-words}

Score table normalization using TF-IDF (single word):
 Score = tf * log (N/n)
 // tf : frequency
// N : number of documents
 // n : number of documents, which KP is presence
Score table normalization using TF-IDF modification (bi-words / three-words) :
 Score = tf * (log(N) - log (N/n)]

Figure 4. Table Score Arranging Algorithm

The process of matching keyphrases is applied to each wordof four types of corpus resulted from

text preprocessing referred to setting in table 1 in which each document in every setting is developed to four
different AST. Therefore, each inputted keyphrase will be matched to each of those different AST. There are
two types of inputted keyphrases: list of stemmed keyphrases which will be matched with stemmed corpus,
and non-stem keyphrases which will be matched with non-stem corpus.Normalized score of single word
which is processed using standard TF-IDF (figure 4) will be small for a high frequency of the word.

IJECE ISSN: 2088-8708

Text Preprocessing using Annotated Suffix Tree with Matching Keyphrase (Ionia Veritawati)

413

Meanwhile, normalized score of bi-words and three-words which are processed using modified TF-IDF
(figure 4) will alsohigh for a high frequency of bi-words and three-words.

2.5. Automatic Keyphrase Extraction

At the previous section, AST is applied to match and score an inputted keyphrase, and then the score
is arranged into feature table between documents and keyphrases. At this section, AST is used to find
keyphrases from a collection of documents automatically.

The proposed method consists of four steps (figure 5). The initial step is extracting all keyphrases
from AST, according to minimum threshold of frequencies at the nodes. The extraction process uses four
types of corpus from preprocessing, which is coded by combination of “remove stop word” and “stem”and
which is described in section 2.2 (table1). The codes are 00, 10, 01 and 11. For example, code “10” refers to
extracted keyphrases from corpus with which applies “remove stop word” and does not apply “stem”. From
the four types of corpus, the results are four types of keyphrases lists (KP00, KP10, KP01 and KP11) and
also four types of tables of document versus keyphrases (TF-IDF00, TF-IDF10, TF-IDF01 and TF-IDF11).

Extract KP from preprocessing : 00 – 10 – 01 – 11 {List 0}
STEP I (Search KP) : compare : KP00 – KP10

 if KP match :
 match with KP 01 + KP11 (without stem)

STEP II (Search Suffixes word) : compare KP result from step I
 match with KP 01 + KP11 (with stem)

STEP III (Search “word + stopwords”) : compare KP 00-01
 match and remove stopwords

STEP IV : eliminate overlap words (1-3 words) of KP result from step I – III

Figure 5. Automatic Keyphrase Extraction Algorithm

The process of algorithm in Step I (figure 5) compares keyphrases between the lists of keyphrases to

find the same keyphrases. The next step, step II and III (figure 5) searches keyphrases from word withaffixes
and from phrases of three-words that have a stop word in the middle of the phrases. The list of keyphrases
resulted from step I – III is checked at the last step (step IV). The process is to eliminate keyphrases that
overlap each other. For example, it eliminates bi-words keyphrases which are included in three-words
keyphrases, single words which are included in bi-words keyphrases, and between keyphrases which are the
same.

2.6. Methodology

The methodology of the experiments is shown in figure 6.Experiments using AST are applied into
two parts. The first part is a process to match inputted keyphrases with AST of each document in a corpus to
get score matching, refer to algorithm in figure 4. The second part refer to algorithm in figure 5 is a process
to extract keyphrases automatically from a corpus. Each experiment is evaluated separately.

Figure 6. Methodology of Experiment

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 409 – 420

414

2.7. Data for Simulation
For easier evaluation, data used in the experiments are simulation data generated from a corpus

generator (figure 7). The number of keyphrases, words with affixes and the list of stop words for three
domains are determined first. In this model, if stemmer is applied, words with affixesthat can create a
keyphrase with a higher score. All the words combined with list of stop words become a list of combined
words. Each index of combined words is randomized and then the randomized words become a simulation
document. After repeating the process, several created documents are joined in a formatted corpus and ready
to be used as simulation (model) data for further process. The model data corpus generated and real data
documents from economy domain are used for simulation and investigationof performance of the proposed
method.

Figure 8 and figure 9 are views of sample of keyphrases and words with affixes in Indonesian
language. The phrases consist of single until three-words, and the stop words have been removed but the
phrases are not stemmed (code:10, refer to setting of table 1). Stemmer used in these experiments is stemmer
for Indonesian language.

• Input :
– List stop words
– files : list Keyphrase + words with affixes

• Process (each – document):
– random -- stop words + Keyphrase + words with affixes
– tag Formatting
– Save document in a corpus file

• Output :
– A corpus file

G= General
Domain = A; {A | A part of G}
Document= D; {D | D part of A}
Word =w; {w | w part of D}
Keyphrase=p;
Word with affix = x; {p, x | p,x part of D}
Stop word = s; {s | s part of G}
{p,x,s | p,x,s part of w}
N1= number of documents (D)
N2 = number of a keyphrase (p) at Di ; i: index of a document
N3 = number of a word with affix (x) at Di
N4 = number of a stop word at Di
nKPi= number of different keyphrase
nXi= number of different keyphrase
nSi= number of different keyphrase
w x, p, s
R= (nKPi*N2) + (nXi*N3) + (nSi*N4)
r = randomize (1..R)
for r= 1 .. R, save w(r) to Di
create a formatted corpus of N1 documents

Figure 7. Automatic Corpus Generation Algorithm

Figure 8. Ilustration: List of Words as a Single Word

in Experiment
Figure 9. Ilustration: List of Words as Bi-Words and

Three-Words in Experiment

IJECE ISSN: 2088-8708

Text Preprocessing using Annotated Suffix Tree with Matching Keyphrase (Ionia Veritawati)

415

3. RESULTS AND DISCUSSION

3.1. Experiment of Keyphrase Matching

ExperimentI (figure 6) is a process for keyphrase matching. The list of keyphrases model and
inputted keyphrase using for matching process is determined first fromthree subdomains of economy (figure
8 and 9). A combination of100-corpus is generated and arranged in fivesettingsof model data (table 2). Each
model data consists of 20 corpus whichare generated by algorithm for Automatic Corpus Generation (figure
7). Each corpus consists of 15–900 documents. Each document consists of 20 keyphrases model where the
numbers are 2-40 words or phrases for each keyphrase, 24 words with affixes where the numbers are 2-40 for
each word. Eachdocument also consists of a list of stop words with 4-60 words for each stop word. The list
of inputted keyphrase has the same contentas the list of the keyphrase model.

Table 2. Setting of Model Data (Simulation Data)
No. Model Data Setting
1 (number of KP) = (number of wordswithaffixes)
2 (number of KP) > (number of wordswith affixes)
3 (numberof KP) < (number of wordswithaffixes)
4 (numberof KP) >> (numberof wordswithaffixes)
5 (number of KP) << (number of wordswithaffixes)

The results of experiment I, which matchingprocess between inputted keyphrases (KP) with AST

developed fromeach document of a corpus, shown in table 3 (column 4). It showsas averages and standard
deviations of percentage of total matching score from 100 corpus processed. Each score is related to
combination of four types of text preprocessing (column 5, table 3), which has been explained at section 2.2
(table 1). Number of keyphrases model (Score0) determined first in corpus generator (figure 7) and is also
used for comparison in column 1-3 of table 3.

Table 3. Average and Deviation Standard – Results of Matching of List of Keyphrases using Model Data
(Matching Score Comparison)

No.

Number of Matching Keyphrase /Total Keyphrase Model
(% of Average ±Deviation Standard)

Preprocessing

= Score0 > Score0 < Score0 Total Score of KP StopWords+ Stem
(1) (2) (3) (4) (5)

1 48.42±9.39 26.50±5.16 8.57±7.41 83.49±2.64 00
2 50.38±13.73 32.38±12.36 15.44±13.83 98.20±2.83 10
3 32.54±9.49 41.81±5.35 8.57±7.41 82.92±2.59 01
4 33.00±13.73 47.69±12.56 15.30±13.77 96.94±3.12 11

The scoresof (extracted keyphrases = number of keyphrases model (=Score0, column 1 of table 3)

will result in48% or higher, if the text is preprocessed without stemmer, without or with “remove stop words”
(00 and 10, column 5 of table 3). In the same experiment, the scores of (extracted keyphrases > number of
keyphrases model (>Score0, column 2 of table 3) will result in 41% or higher, if the preprocessed text apply
stemmer, without or with “remove stop words” (01 and 11). Other result, the scores of (extracted keyphrases
<number of keyphrases model (<Score0, column 3 of table 3)will result in 15.3 % or higher, if the text is
preprocessed with “remove stop words” and without or with stemmer (10 and 11).

Total score of matching process of experiment I (column 4 of table 3) will result inbetter score about
96%, if the process uses corpus which has been preprocessed by “remove stop words” and by “stem” or
“non-stem” process (code 10 and 11, column 5 of table 3) compared to result in about 82%, from corpus
which is preprocessed without “removing stop words” and by “stem” or “non-stem” process (code 00 and
01).Based on every score value, it can be seen that thescore processed by ”removing stopwords” will make
the total score of keyphrase matching higher compare toscore processed by stemming words. Generally,
process of keyphrase matching will give a better score if the inputted keyphrases are matched with AST from
a corpus with“removing stopwords” and “non-stemmed words” (code 10) or a corpus with“removing
stopwords” and “stemmed words” (code 11).

“Removing stop words” has the most contribution in finding key phrases from text based on
inputted key phrases model as references for key phrase extraction. Meanwhile,applying“stemmed words”
could reduce a small number of keyphrases extracted because of stemmer which sometimes diminish
meaning words of domain representation.

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 409 – 420

416

3.2. Experiment of Automatic Keyphrase Extraction using Model Data
Experiment II (figure 6) is a process for automatic keyphrase extraction.Each settingof model datain

table 4 and table 5 (column 1) which consists of 8 corpus has the same model data as the ones in experiment I
(referring tomodel data settingintable 2). The results of experiment II are shown in column 2, 3, 4, 5 of table
4 and column 2, 3 of table 5.

Table 4shows the comparison between the number of extractedkeyphrases and the number of
keyphrases model. The experiments use stemmed corpus and non-stemmed corpus for extracting 1-3 words
as keyphrases. The resultsof automatic keyphrases extractions are more than 90% (column 2-5, table 4). It
means almost all keyphrases model with stem or without stem for 1-3 words or 2-3 words from corpus are
extracted automatically, using settings of model data (column 1, table 4). Extracting keyphrases using non
stemmed words give the same or higher percentage of extraction.

Table 4. Average and Deviation Standard – Results of Automatic Extraction ofKeyphrases using Model Data
of Five SettingsComparedto Number of Keyphrases Model

No
Model Data

Setting

 Number of Match Extracted KP /Number of KP Model
(% of Average ±Deviation Standard)

1-3 Words 2-3 Words
NonStem Stem NonStem Stem

(1) (2) (3) (4) (5)
1 (no. of KP) = (no. of words&affixes) 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
2 (no. of KP) > (no. of words& affixes) 93.75±11.57 93.75±11.57 92.65±13.62 92.65±13.62
3 (no. of KP) < (no. of words&affixes) 95.00±8.86 93.75±10.94 97.79±4.38 96.32±6.99
4 (no. of KP)>>(no.of words&affixes) 94.38±10.50 94.38±10.50 93.38±12.35 93.38±12.35
5 (no. of KP)<<(no. of words&affixes) 97.50±3.78 93.75±7.91 99.26±2.08 94.85±6.62

According to five model data settings (column 1, table 4), model with number of keyphrases lower
than number of words with affixes (row 3 and 5, table 4). They have better results compared to model with
number of keyphrases greater than number of words with affixes (row2 and 4, table 4).It is because
keyphrases from setting in row 3 and 5 are separated wellfrom words with affixesso that the keyphrases can
be matched more easily. Especially in the case of model data setting at row 1, where there is equality
between the number of keyphrases and words with affixes, the extracted results can reach 100%. This setting
model shows that the method may extract all keyphrases for a specific case.

Table 5. Average and Deviation Standard – Results of Automatic Extraction of Keyphrases using Model
Data of Five Settings Comparedto Number of All Phrases Extracted

No
Model DataSetting

Number of MatchingExtracted KP /Number of
Extracted KP

(% of Average ±Deviation Standard)
1-3 Stem Words 2-3 Stem Words

(1) (2) (3)
1 (no. of KP) = (no. of words&affixes) 86.50±1.28 84.49± 1.43
2 (no. of KP) > (no. of words& affixes) 77.47±10.74 80.24±16.44
3 (no. of KP) < (no. of words&affixes) 83.01±5.83 82.76±5.37
4 (no. of KP)>>(no. of words&affixes) 93.38±13.60 93.38±16.44
5 (no. of KP)<<(no. of words&affixes) 81.79±8.57 80.03±9.11

Table 5 shows the number of stemmed and extracted keyphrases model compared to number of all

phrases extracted. Actually, phrases extracted are not always keyphrases. Phrasesor keyphrases to be
extracted in this experiment arederived from the stemmed corpus. The results of the comparison for 1-3
words of matchingextracted keyphrases are about 77- 93% (column 2, table 5) and the results of the
comparison for 2-3 words are about 80-93% (column 3, table 5). It means, there are about 10-13% extracted
phrases which are non-keyphrases.

According to five model data settings (column 1, table 5), model with number of keyphrases equal
or lower than number of words with affixes (row 1, 3 and 5, table 5) give better results than. Using model
with number of keyphrases greater than number of words with affixes (row 2, table 5). It is because it has the
same reason with cases in table 4 in which keyphrases are separated well from words with affixes.As a result,
the keyphrases can be matched more easily. Especially for model data setting at row 4, in which the number

IJECE ISSN: 2088-8708

Text Preprocessing using Annotated Suffix Tree with Matching Keyphrase (Ionia Veritawati)

417

of keyphrases very greater than the number of words with affixes, the extracted resultsmay reach 93%, due to
a great number of keyphrases. Consequently, almost all keyphrases are extracted.

Results by model data (table 4) for automatic keyphrase extraction show that almost all key phrases
model (more than 90%) can be extracted using Annotated Suffix Tree (AST) combined with text
preprocessing. More realistic results is shown in table 5, in which all phrases extracted using the proposed
method result in more than 77% keyphrases. It means that the proposed method is good enough to be used for
extractingkeyphrases or phrases which represent domain of text. Compared to the other method, such as
KEA,a method for extracting keyphrases using Naive Bayes [1] which needstraining datafor developing a
model prediction of keyphrases, the proposed method extracts keyphrases automatically without training
data.

3.3. Experiment of Automatic Keyphrase Extraction using Modified Model Data and Real Data

This experiment is still related to experiment II in which the datain table 6 is a modification of
model data in experiment I by adding a list of non-keyphrases which frequencies are lower than matching
threshold. To generate modified model data, addition algorithm (figure 10) is combined to corpus generator
(figure 7). The purpose of the additional data to the model is to make a closer condition to real text data.
Results of this experiment are focused on extraction of 2-3 words, because it determines whether a phrase has
meaning or not. Results of automatic keyphrase extractionin column 2 of table 6 use keyphrases model to be
compared.

Setting of modified model data (column 1 of table 6) consists of two model data corpus which use
the same type of domain, keyphrases and words with affixes(some contain keyphrases). In model data I, the
number of keyphrases is greater thanthe number ofwords with affixes. The number of each non keyphrase is
50 and the number of documents is 120. The number of keyphrases, the number of words with affixes, the
number of stop words andthe number of non keyphrases for each document are respectively 5, 3, 12 and 1. In
model data II, the number of keyphrasesis smaller thanthe number of words with affixes. The number of
other parameters is the same asthe one in model data I. The two models consist of the same list of non-
keyphrases.

Combine this code with algorithm infigure 7 :
non-keyphrase = y; {y | y part of G}
N5 = number of non keyphrase at Di
nYi= number of different non-keyphrase
w x, p, s, y
R= (nKPi*N2) + (nXi*N3) + (nSi*N4) + (nYi*N5)
r = randomize (1..R)
for r= 1 .. R, save w(r) to Di
create a formatted corpus of N1 documents

Figure 10. Part of Modified Corpus Generator by Adding Non Keyphrases

Table 6. Results of Automatic Extraction of Keyphrases using Model Data by Addition of Non Keyphrases
(2-3 Keyphrases)

Modified Model
Data

Number of Extracted KPModel
/ Number of KP Model (%)

Number of
MeaningfulPhrase/ Number

of Extracted Phrase (%)

SeparatedKP
Candidates of
Main Domain

(2-Means)

Table TF-IDF
from Prepro-

cessing

(1) (2) (3) (4) (5)

I 94.12 44.44 >90% 00, 01, 11

II 86.00 36.00 >90% 00, 01, 10

The comparisons of number in Table 6(column 2 and 3) focus only on 2-3 keyphrases. The resultsof

extraction in column 2 of table 6 show that more than 80% keyphrases model can be extracted. By validating
the score results in column 3 of table 6 manually, about 36-44% phrasesextracted are meaningful phrases
and, the resultsof all meaningful phrases extracted are keyphrases. The results in column 2 and 3 of
table6show that model data I give better extraction resultsthan the results in model II. It means that the
process of automatic keyphrase extraction using AST in this experiment will have a better output of
keyphrases for data in which distribution of keyphrases is more significant than the number of other phrases
(case study of model data I and II).

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 409 – 420

418

The list of extracted phrases and their matching score as a results from automatic keyphrase
extraction isarranged by Table Score Arranging Algorithm (figure 4) into four types of TF-IDF tables (TF-
IDF00, TF-IDF01, TF-IDF10, TF-IDF11) from corpus in model data I and II. Each of four types of
preprocessing (table 1) is applied in the scoring process. The table of TF-IDF (documents versus extracted
phrases) becomes an input of 2-means clustering as an unsupervised learning process.The objective of this
clustering is to separate keyphrases candidate from extracted phrases (main domain) in a corpus. By checking
manually,one cluster containing dominant meaningful phrases from the results of clustering, more than 90%
of the keyphrase candidates or meaningful phrases(Column 4 of table 6) can be separated. The tables of TF-
IDF that provide a significant separation of keyphrase candidatesare shown in column (5) of table 6.Input
tablesinput which give good clustering results are TF-IDF00 and TF-IDF01. Generally, automatic keyphrase
extraction using modified model data combined by 2-means clustering give performance score up to 90% to
separate clusters consisting of extract keyphrase candidates from a documents collection.

The results of experiment II using text data from 3 corpus of real documents collection mainly in
economy domain and extraction of 2-3 words are presented in table 7. The matching evaluation is done
manually because comparison data for real data document are not provided, due tothe non existence of
keyphrases model. Based on manual check of all meaningful phrases extracted, the results (column 2, table 7)
show that by using the real data, more than 70% of extracted phrases compared to all phrases are
meaningfulphrases, and the meaningful words / phrases are not always keyphrases. For example, “kenaikan
harga” (increasingof price) is meaningful words / phrase but it is not a keyphrase.

Table 7. Result of Automatic Extraction of Keyphrases using Real Data
Real Data

(no. of doc)
MeaningfulPhrases/ All

Phrases (%)
SeparatedKP Candidates of Main

Domain(2-Means)
(1) (2) (3)

10 76.92 >90%

29 71.43 >90%

240 72.00 >90%

The same step of clustering process to this real data is applied to modified model data for
separatingmeaningfulphrases or keyphrase candidates from all phrases extracted. The results of 2-means
clusteringchecked manually to a cluster containing dominant meaningful phrases are about 90% phrases
(column 3 of table 7)having meaningfulones.The results score of clustering to real data are almost the same
asresults score of experiment using modified model data (column 4 of table 6). Generally, AST can be used
to extractkeyphrasesautomatically and combined by clustering method to get meaningful phrases. It will give
a better result if the inputted data for clustering is table of TF-IDF00 or TF-IDF01, which “removing
stopwords” should not be applied and “stemmed words” can be applied as an option.

4. CONCLUSION

Keyphrase matching, scoring and extraction using AST technique and combination of text
preprocessing and followed by clustering propose a method to extract keyphrases from text, which generally
extracts meaningful phrases. In the initial process, it runs automatically and it does not need domain experts.
Manual checking is done at the end of experiment to give a list of extracted keyphrase candidates. It can
reduce efforts of experts because they determine keyphrase candidates that have been extracted at the end of
experiments.

Specifically, memory used in AST structure is lower, and text preprocessing to determine
keyphrases is more efficient than conventional process using 2-gram or 3-gram method.In general, the
proposed method can be used as a semi-automatic keyphrase extraction from documents collection which is
not a text of a specific domain corpus.As a result, the method can be generally used in other domains,
because it can detect keyphrases without checking the meaning, when it runs automatically.

Comparison to other methodssuch as N-gram and extract key phrases using Naive Bayes is a
relative comparison, which the differenceslie in data structure and rule. Althoughit shows relative
comparison, the proposed method shows the ability to extract keyphrases according to the experiments.

Future work of this experiment will use the candidate of keyphrases to be clustered or classified
with more precisely, including keyphrase or non-keyphrase categories related to the domain investigated. The
results can be used to develop a knowledge based on a domain and also use them as a candidate of query in
Information Retrieval System.

IJECE ISSN: 2088-8708

Text Preprocessing using Annotated Suffix Tree with Matching Keyphrase (Ionia Veritawati)

419

ACKNOWLEDGEMENTS
We wish to acknowledge Prof. Boris Mirkin for his contributions to this research.This research was

supported partially by Grant from Directorate of Higher Education of Indonesia.

REFERENCES
[1] I.H. Witten, et.al., “KEA : Practical Automatic Keyphrase Extraction”,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.3127, Hamilton, New Zealand, 1999.
[2] M. H.Haggag, “Keyword Extraction using Semantic Analysis”, International Journal of Computer Applications,

vol. 61, pp. 1–6, 2013.
[3] G. Ercanand I. Cicekli, “Using Lexical Chains for Keyword Extraction”, Information Processing & Management,

vol. 43, pp. 1705–1714, 2007.
[4] X. Jiang, et al., “A Ranking Approach to Keyphrase Extraction”, Proceedings of the 32nd International ACM

SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’09, 2009, pp. 756-757.
[5] Y. Abuzir and T. Sabbah, “First Token Algorithm for Searching Compound Terms Using Thesaurus Database”,

Journal of Computer Science, vol. 8, pp. 61–67, 2012.
[6] H.A. Rahman and S.A. Noah, “A Comparative Analysis of the Entropy and Transition Point Approach in

Representing Index Terms of Literary Text”, Journal of Computer Science, vol. 7, pp. 1088–1093, 2011.
[7] N. Erbs, et al., “Bringing Order to Digital Libraries: from Keyphrase Extraction to Index Term Assignment”, D-Lib

Magazine, vol. 19, pp. 1–16, 2013.
[8] S.W.K. Chan and J. Franklin, “A Text-Based Decision Support System for Financial Sequence Prediction”,

Decision Support Systems, vol. 52, pp. 189–1981, 2011.
[9] A.A.I.N.E. Karyawati, E. Winarko, Azhari and A. Harjoko, “Ontology-based Why-Question Analysis Using

Lexico-Syntactic Patterns”, International Journal of Electrical and Computer Engineering (IJECE), vol. 5(2), pp.
318-332, 2015.

[10] M. Danilevsky, et al., “KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-
Representative Document Titles”, http://arxiv.org/abs/1306.0271, accessed July 2014.

[11] M. Arshad, “Implementation of Kea -Keyphrase Extraction Algorithm by Using Bisecting K-Means Clustering
Technique for Large and Dynamic Data”, International Journal of Advanced Technology and Engineering
Research, 2009. IJATER 2009,pp. 134–136.

[12] E.B. Foroutan and H. Khotanlou, “Improving Semantic Clustering Using with Ontology and Rules”, International
Journal of Electrical and Computer Engineering (IJECE),vol. 4(4), pp. 548-556, 2014.

[13] W. Wang, et. al., “Exploring Hypergraph-Based Semi-Supervised Ranking for Query-Oriented Summarization,”
Information Sciences, vol. 237, pp. 271–286, 2013.

[14] M.V. Kumar, et al., “Analysis of Intelligent Data Mining for Information Extraction using Java”, Journal of
Computer Science, vol. 9, pp. 1451–1455, 2013.

[15] A.M. Saif and M.J.A. Aziz, “Collocation Extraction from Arabic Corpus”, Journal of Computer Science, vol. 7, pp.
6–11, 2011.

[16] K. Chekima and P. Anthony, “Categorizer Agent for Electronic Computer Science Academic Papers”, American
Journal of Economics and Business Admnistration, vol. 3, pp. 213–2181, 2011.

[17] M. Thangaraj and V. Gayathri, “A Context-Based Technique Using Tag-Tree for an Effective Retrieval”, Journal
of Computer Science, vol. 9, pp. 1602–1617, 2013.

[18] A.K. Uysal and S. Gunal, “The Impact of Preprocessing on Text Classification”, Information Processing &
Management, vol. 50, pp. 104–112, 2014.

[19] M.A. Martínez-Prieto, et al., “Natural Language Compression on Edge-Guided Text Preprocessing”, Information
Sciences, vol. 181,pp. 5387–5411, 2011.

[20] H. Ogura, et.al., “Comparison of Metrics for Feature Selection in Imbalanced Text Classification”, Expert Systems
with Applications, vol. 38, pp. 4978–4989, 2011.

[21] R. Giegerich and S. Kurtz, “From Ukkonen to McCreight and Weiner : A Unifying View of Linear-Time Suffix
Tree Construction”, Algorithmica, vol. 19, pp. 331–353, 1997.

[22] R. Pampapathi, et al., “A Suffix Tree Approach to Anti-Spam Email Filtering”, Machine Learning, vol. 65,pp. 309-
338, 2006.

BIOGRAPHIES OF AUTHORS

Ionia Veritawati received a Master Degree on Software Engineering from Bandung Institute of
Technology, Indonesia, in 1999. She is currently Ph.D student of Computer Science Faculty in
University of Indonesia. Her areas of interest include Machine Learning, Text Mining,
Information Retrieval and Software Engineering.

 ISSN: 2088-8708

IJECE Vol. 5, No. 3, June 2015 : 409 – 420

420

Ito Wasito received a Master Degree and Ph. D on Data Mining from University of London,
1996 and 2003, respectively. He is currently Senior Lecturer and researcher of University of
Indonesia, Faculty of Computer Science. His areas of interest include Machine Learning
Application, Data Mining, Bioinformatics and Biomedical Informatics.

T. Basaruddin received a Master Degree and Ph.D on Computing from University of
Manchester (UK) in 1988 and 1990 respectively. He is currently Professor and researcher of
University of Indonesia, Faculty of Computer Science. His areas of interest include Numerical
Linear Algebra and Applications

