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 Motivated by Artstein and Sontag universal formula, this brief paper presents 
an explicit proof of the universal formula for asymptotic stabilization and 
asymptotic disturbance rejection of a nonlinear system with mismatched 
uncertainties and time varying disturbances. We prove the stability via 
Lyapunov stability criteria. We also prove that the control law satisfies small 
control property such that the magnitude of the control signal can be bounded 
without the catastropic effect to the closed loop stability. For clarity, we 
benchmark the proposed approach with other method namely a Lyapunov 
redesign with nonlinear damping function. We give a numerical example to 
verify the results. 
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1. INTRODUCTION 

Stabilizing systems with uncertainty and exogenous disturbance requires massive control energy. 
For illustration, it is easy to stabilize unstable system by forcing their poles to the left-hand-side of the S-
plane so that the closed-loop system stable. Theoretically, placing the closed-loop poles near to െ∞ render 
fast convergence rate but require high energy as trade-off. In some industrial cases are DC drive systems 
where the constraints are due to the physical limitation of the motor drive such as converter protection, 
magnetic saturation and motor overheating that make the current command limited to an admissible set of 
input. For another case such as electric vehicles where the controlled variable is a speed, the motor torque or 
voltage may be bounded within allowable ranges. 

There are various attempts to stabilize nonlinear system with mismatched uncertainty and time 
varying disturbance. Such attempts have been addressed in [1]-[5]. In [1], a nonlinear damping function is 
augmented to the nominal controller during the Lyapunov redesign phase. In this paper, we begin with 
normal feedback control law by using a Lyapunov redesign techniqu. During Lyapunov redesign phase, a 
nonlinear damping function is used to combat with uncertainty or exogenous disturbance. By means of 
comparing square, we then improve the control law complexity by avoiding the cancellation of a useful 
nonlinear term. Lastly, we introduce a "universal-like" formula to stabilize the system with less control effort. 
As such, main objective of this paper is to provide an improved universal formula due to Artstein [6] and 
Sontag [7-8], such that it can be applied to nonlinear systems with mismatched uncertainties and time varying 
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disturbances. The introduced formula is generalized, simple, explicit, and in a sense of "universal", in order 
to obtain global asymptotic stability and global disturbance rejection with less control effort. 

Let concern single-input-single-output, one-dimensional nonlinear system of the form: 
 

ሶݔ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻݑ ൅ ݄ሺݔ,  ሻ (1)ݐ
 
with state ݔሺݐሻ ∈ Թ and control ݑ ∈ Թ. ݂ሺݔሻ and ݃ሺݔሻ are analytic, smooth vector fields, which are infinitely 
differentiable. A smooth function ݄ሺݔ,  ሻ represents the sum of uncertainties and exogenous disturbances. Forݐ
feedback stabilization, the existence of a control-Lyapunov function is necessary, as in Artstein’s theorem: 
 

“Artstein theorem states that a dynamical system has a differentiable control-Lyapunov 
function if and only if there exists a regular stabilizing feedback” 

-Artstein [6]- 
 

Therefore, there exists a smooth, proper and positive definite control-Lyapunov function ܸ:Թ for the system 
in equation (1) where conditions ܸሺ0ሻ ൌ 0, ܸሺݔሻ ൐ 0 for ݔ ് 0, and ܸሺݔሻ ⟶ ∞ as ‖ݔ‖ ⟶ ∞ are valid. 
Recall from [8] that the existence of such a control-Lyapunov function implies that the system is 
asymptotically controllable provided that the derivative of ܸ:Թ௡ negative definite. As such, there must be a 
feedback control law: 
 

ݑ ൌ ሻݔሺܭ െ
െ݂ሺݔሻ݄ଶሺݔ, ሻݐ

݃ሺݔሻ݂ሺݔሻ݄ሺݔ, ሻݐ ൅ ߬݁ିఈ௧
, ܭ ൐ 0 

(2) 

 
which globally stabilize the system in equation (1). Note that, for stability, high control magnitude ݑ ∈ Թ௠ is 
required in order to push systems poles to the left hand side of the s-plane. Thus, the regular feedback law in 
equation (2) is unbounded in magnitude, as well as high in energy consumption. Our control problem now is 
to limit ݑ ∈ Թ௠ within െݑ௟௢௪௘௥ ൏ ݑ ൏  ௨௣௣௘௥ such that the closed loop systemݑ
 

ሶݔ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻܭሺݔሻ (3) 
 
remain Hurwitz and ݄ሺݔ, ݐ ሻ perished asݐ ⟶ ∞ in order to preserve a global disturbance rejection. 
 
 
2. METHODOLOGY - UNIVERSAL FORMULA FOR ROBUST BOUNDED CONTROL 

Consider nonlinear system in equation (1) and a control-Lyapunov function ܸ:Թ. There exist 
operators ܨ ∈ Թ, ܩଵ ∈ Թ, ܩଶ ∈ Թ, and ܩଷ ∈ Թ, where: 

 

ܨ ൌ ൬
߲ܸ
ݔ߲
൰
்

∙ ݂ሺݔሻ (4) 

 

ଵܩ ൌ ൬
߲ܸ
ݔ߲
൰
்

∙ ݃ሺݔሻ (5) 

 
ଶܩ ൌ ݔ ∙ ݃ሺݔሻ (6) 

 

ଷܩ ൌ
݄ሺݔ, ሻݐ
݃ሺݔሻ

 (7) 

 
There also exist a scalar ߬ ൐ 0 and ߙ ൐ 0, such that the robust bounded control law: 
 

,ܨሺݑ ,ଵܩ ሻݐ ൌ െ
ܭ ቀܨ ൅ ඥܨଶ ൅ ଵܩ

ସቁ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ

െ
ଷܩଶܩ

ଶ

ଷܩଶܩ ൅ ߬݁ିఈ௧
, ܭ ൐ 0 (8) 

 
satisfies small control property for the system in equation (1) (see definition 1) and also guarantees the 
asymptotic stability and the asymptotic disturbance rejection (which means robust toward ݄ሺݔ,  .(ሻݐ
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Definition 1: Small Control Property 
For the system in equation ሺ1ሻ satisfies small control property, there is a known control-Lyapunov function 
ܸ:Թ. For every ߝ ൐ 0, there exists a ߜሺߝሻ ൐ 0 so that for all ݔ ് 0 and ‖ݔ‖ ൏  there is control ,ߜ
,ܨሺݑ‖ ,ଵܩ ‖ሻݐ ൏ ሶݔ such that ߝ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻݑሺܨ, ,ଵܩ ሻݐ 	൏ 0. 
 
In what follows, Lemma 1 is useful to reach the stability proof of the robust bounded control law in equation 
(8). 
 
Lemma 1 [1]: 
Assume that ܩ ,ܨଵ in equation (8) are real numbers. And there exists real number ߝ such that ܨ ൏  ଵ|, andܩ|ߝ

0 ൏ ߝ ൑ ߮ for ߮ ∈ Թ. Therefore, there exists a nominal stabilizing function ݑሺܨ, ଵሻܩ ൌ െ
௄ቆிାටிమାீభ

రቇ

ீభቆଵାටଵାீభ
మቇ

 with 

property: 
 

,ܨሺݑ| |ଵሻܩ ൏ ݉݅݊ሼ2ߝ ൅ ,|ଵܩ|  ሽ (9)ߝ
	

Proof of Lemma 1 
If ܩଵ ൌ 0, then the solution for ݑሺܨ, ଵܩ ଵሻ is trivial. Then, we assume thatܩ ് 0. Since |ݑሺܨ, |ଵሻܩ ൌ
ଵܩ ଵሻ|, thenܩെ,ܨሺݑ| ൐ 0 and ܨ ൏ ܨ ଵ. Ifܩߝ ൐ 0, then ܨ ൏ ଵ| and 0ܩ|ߝ ൏ ߝ ൑ 1. With control parameter 
ܭ ൌ 1, we can see that  nominal stabilizing function |ݑሺܨ, ߝ ଵሻ| bounded by ߮ asܩ ൑ ߮, and also bounded by 
its numerator. This yield: 
 

,ܨሺݑ ଵሻܩ ൌ
ܨ ൅ ඥܨଶ ൅ ଵܩ

ସ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ
	  

ൌ
ଵܩߝ ൅ ඥሺܩߝଵሻଶ ൅ ଵܩ

ସ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ

 

ൌ
ߝ ൅ ඥߝଶ ൅ ଵܩ

ଶ

1 ൅ ඥ1 ൅ ଵܩ
ଶ
					 

൏ ݉݅݊ሼ2ߝ ൅ ,|ଵܩ| ߮ሽ 

(10) 

 
Proof of Stability: 
By referring to Lemma 1, the proof of stability for the robust bounded control law in equation (8) is 
presented. With control-Lyapunov function ܸ ൌ ଶ:Թݔ0.5 ൐ 0, the derivative of ܸ:Թ along x renders 
 

ሶܸ ൌ ሻݔ൫݂ሺݔ ൅ ݃ሺݔሻݑ ൅ ݄ሺݔ,  ሻ൯ݐ

ൌ ሻݔ൮݂ሺݔ ൅ ݃ሺݔሻቌെ
ܭ ቀܨ ൅ ඥܨଶ ൅ ଵܩ

ସቁ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ

െ
ଷܩଶܩ

ଶ

ଷܩଶܩ ൅ ߬݁ିఈ௧
ቍ ൅ ݄ሺݔ,  ሻ൲ݐ

ൌ ሻݔቌ݂ሺݔ െ ݃ሺݔሻ
ܭ ቀܨ ൅ ඥܨଶ ൅ ଵܩ

ସቁ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ
ቍ ൅ ݔ ൭݃ሺݔሻ

െܩଶܩଷ
ଶ

ଷܩଶܩ ൅ ߬݁ିఈ௧
൅ ݄ሺݔ,  ሻ൱ݐ

൑ ቌെݔ
ܨ ൅ ඥܨଶ ൅ ଵܩ

ସ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ
ቍݔܭ ൅ ሻݔሺ݃ݔ

െܩଶܩଷ
ଶ

ଷܩଶܩ ൅ ߬݁ିఈ௧
൅ ,ݔሺ݄ݔ  ሻݐ

	൑ െ
ܨ ൅ ඥܨଶ ൅ ଵܩ

ସ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ
ଶݔܭ ൅

െ‖ܩଶܩଷ‖ଶ

ଷܩଶܩ ൅ ߬݁ିఈ௧
൅  ଷܩଶܩ

൑ െ
ܨ ൅ඥܨଶ ൅ ଵܩ

ସ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ
ଶݔܭ ൅

െ‖ܩଶܩଷ‖ଶ ൅ ଷ‖ଶܩଶܩ‖ ൅ ଷ߬݁ିఈ௧ܩଶܩ

ଷܩଶܩ ൅ ߬݁ିఈ௧
 

൑ െ
ܨ ൅ඥܨଶ ൅ ଵܩ

ସ

ଵܩ ቀ1 ൅ ඥ1 ൅ ଵܩ
ଶቁ
ଶݔܭ ൅ ߬݁ିఈ௧ 

(11) 
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 With Lemma 1, we can further prove that: 
 

ሶܸ ൑ െܭሺ݉݅݊ሼ2ߝ ൅ ,|ଵܩ| ߮ሽሻݔଶ ൅ ߬݁ିఈ௧ (12) 
	
This completes the proof for asymptotic stability. When ݐ ⟶ ∞, term ߬݁ିఈ௧ vanishes to confirm the 
asymptotic disturbance rejection of the system in equation (1). 

 
 
3. NUMERICAL EXAMPLE 

Consider one-dimensional nonlinear system: 
 
ሶݔ ൌ െݔଶ െ ଷݔ െ ݑ െ ݄ሺݔ,  ሻ (13)ݐ

	
with state ݔሺݐሻ ∈ Թ and control ݑ ∈ Թ. The uncertainty with time varying disturbance is denoted as 
 

݄ሺݔ, ሻݐ ൌ ଶݔ ,ݔሺ݊݅ݏ  ሻ (14)ݐ
 

In what follows, we stabilized the system in equation (13) such that the state ݔሺݐሻ ∈ Թ is asymptotically 
stable towards perturbed initial state ݔሺ0ሻ and also achieve the asymptotic disturbance rejection toward 
݄ሺݔ,  ሻ. We present two approaches; a Lyapunov redesign with nonlinear damping factor and the proposedݐ
bounded control in equation (8). 
 
3.1.  Stabilization using Lyapunov Redesign and Nonlinear Damping Function 

Firstly, let stabilize system in equation (13) using direct Lyapunov technique with Lyapunov 
redesign and nonlinear damping function as addressed in [1]. Let consider system ሺ13ሻ in a form 

 
ሶݔ ൌ ݂ሺݔሻ ൅ ݃ሺݔሻሾݑ ൅ ,ݔሺ߂ሻݔሺߦ ,ݑ  ሻሿ (15)ݐ
 

where ߦሺݔሻ is a vector of known smooth nonlinear function, and ߂ሺݔ, ,ݑ  ሻ is the vector of uncertainݐ
nonlinearities and disturbance. Then, the control law renders the closed-loop system input-to-state stability 
for the system in equation ሺ15ሻ with respect to the disturbance input ߂ሺݔ, ,ݑ  ሻ is denotedݔሻ. The function ݀ሺݐ
as a stabilizing function for the nominal system in equation (15).  
 

ݑ ൌ ݀ሺݔሻ െ ݇
߲ܸ
ݔ߲

ሺݔሻ݃ሺݔሻ|ߦሺݔሻ|ଶ, ݇ ൐ 0 (16) 

 
Likewise, for the system in equation (13), let ݀ଵሺݔሻ ≡  ሻ for the nominalݔWe firstly seek ݀ଵሺ .ݑ

unperturbed system in equation (13). Let there exists a control-Lyapunov function ܸሺݔሻ ൌ  ଶ such thatݔ0.5
the nominal stabilizing function in equation (17) renders the derivative of ܸሺݔሻ along ݔ be a negative definite 
function (i.e. ሶܸ ሺݔሻ ൑ െܭଵݔଶ). 

 
݀ଵሺݔሻ ൌ ଶݔ ൅ ଷݔ െ ଵܭ				,							ݔଵܭ ൐ 0 (17) 

 
Therefore, comparing equation (14) and equation (15) yields a vector of known smooth nonlinear function 
 

ሻݔሺߦ ൌ  ଶ (18)ݔ
 
and a robust stabilizing function 
 

ଵݑ ൌ ଶݔ ൅ ଷݔ െ ݔଵܭ ൅  ሻ (19)ݔଶሺߦݔܭ
 
3.2. Cancellation Avoidance 

Control law in equation (19) is a straight forward design based on direct Lyapunov inspired by 
Artstein. Function ݀ଵሺݔሻ eliminates ݔଷ-term in the system equation (13), which is known as a useful 
nonlinear term. As such, by using the comparing square, we devised a method to avoid the cancellation of a 
useful nonlinear term. Let again ݀ଶሺݔሻ ≡  ଶ. We thenݔሻ0.5ݔand recall a control-Lyapunov function ܸሺ ,ݑ
obtain its derivative along x as follows: 
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ሶܸ ሺݔሻ ൌ ሻݔሾെ݀ଶሺݔ െ ଶݔሺݔ ൅  ሻሿݔ

ൌ െ݀ݔଶሺݔሻ ൅
1
4
ଶݔ െ ൬ݔ ൅

1
2
൰
ଶ

 ଶݔ
(20) 

 
With that, ݀ଵሺݔሻ term in equation (17) can be reduced to 
 

݀ଶሺݔሻ ൌ ݔ0.25 ൅  (21) ݔଵܭ
 
and hence reducing the control complexity of equation (19), as follows: 
 

ଶݑ ൌ
1
4
ݔ ൅ ݔଵܭ ൅  ሻ (22)ݔଶሺߦݔܭ

 
By substituting equation (21) into equation (20), the asymptotic stability can be guaranteed via the derivative 
of ܸሺݔሻ, as follows: 
 

ሶܸ ሺݔሻ ൑ െܭଵݔଶ െ ൬ݔ ൅
1
2
൰
ଶ

 ଶ (23)ݔ

 
3.3. Robust Bounded Control using Universal Formula 

This subsection is devoted to the application of the proposed universal formula in equation (8) to the 
numerical system in equation (13). With the control-Lyapunov function ܸሺݔሻ ൌ  ଶ, we know from theݔ0.5
standard form in equation (1) that: 

 
߲ܸ
ݔ߲

ൌ ݔ

݂ሺݔሻ ൌ െݔଶ െ ଷݔ

݃ሺݔሻ ൌ െ1

ܨ ൌ െݔଷ െ ସݔ

ଵܩ ൌ െݔ

ଶܩ ൌ െݔ

ଷܩ ൌ െ݄ሺݔ, ሻݐ ۙ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

 (24) 

 
Therefore, the robust bounded control law is obtained as: 
 

ݑ ൌ െ
െݔଷ െ ସݔ ൅ ඥݔସሺݔଶ ൅ ଷݔ2 ൅ ସݔ ൅ 1ሻ

൫1ݔ ൅ √1 ൅ ଶ൯ݔ
ଵܭ െ

െ݄ݔଶሺݔ, ሻݐ
,ݔሺ݄ݔ ሻݐ ൅ ߬݁ିఈ௧

 (25) 

 
for all ܭଵ ൐ 0, ߬ ൐ 0 and ߙ ൐ 0. 

 
 
4. RESULTS AND ANALYSIS 
 This section depicts simulation results for system in equation (13) by using a normal feedback 
control plus nonlinear damping function in equation (22) and a proposed bounded control law in equation 
(25). Figure 1 shows a stabilized ݔ for the pertubation of initial state ݔሺ0ሻ ൌ ሾ1			1ሿ். Figure 2 shows the 
comparison in control signal. Figure 3 shows how the control signal react due to variation of the system state, 
ݑ We can observe that the signal produced by a bounded control law is confined at .ݔ ൏  hence satisfies ,ߝ
small control property in definition 1. 
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Figure 1. Stabilized state using control law in equation (22) and equation (25) 
 

 
 

Figure 2. Control signal for control law in equation (22) and equation (25) 
 

 
 

Figure 3. Control signal trajectories versus system trajectories 
 
 

The control signals in Figure 2 are nonperiodic. Their magnitude and convergence rate are highly 
depend on how far the perturbed initial state ݔሺ0ሻ from the equilibria. To analyse the signal quantitatively, 
we compute the average power and energy by using Euler's approximation (see Appendix). For the 
perturbation in ݔሺ0ሻ ൌ ሾ1			1ሿ், bounded control law require only 2,340.4 Joule of energy to steer ݔሺ0ሻ 
toward origin. While the normal control require 12,101 Joule of energy (see Table 1).  

 
 

Table 1. Average energy produced by all control laws 
Control law Stabilizing 

energy (Joule) 
Diminution 
(percentage)  

Equation (22) 12,101
80.66% 

Equation (25) 2,340.4
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5. CONCLUSION 
 In this paper, we present a universal formula for bounded controller which is robust toward 
uncertainty and disturbance. The proposed method is universal for the system which affine in control. The 
appealing feature of the proposed controller is that, it is fairly easy to construct, guarantee the asymptotic 
stability and the asymptotic disturbance rejection, as well as bounded in the control signal magnitude. The 
numerical example and the simulation in this paper confirm the results. 
 
 
APPENDIX 
 For a continuous signal in Figure 4, we can compute the average energy and power by using Euler's 
approximation. The average energy for a continuous signal shown in Figure 4: 
 

ሻݐ௨ሺܧ ൌ න‖ݑሺݐሻ‖ଶ݀ݐ

ஶ

ିஶ

 (26) 

 
The average power for a continuous signal in Figure 4: 
 

න ሻݐሺݑ
௕

௔
ݐ݀ ≅ ෍ ሺܽݑ ൅ ݐ∆ሻݐ∆݊

ேିଵ

௡ୀ଴

 (27) 

 
where ܰ is the number of integral part in Euler's approximation, ܾ െ ܽ is the control signal duration and 
ݐ∆ ൌ ሺܾ െ ܽሻ/ܰ is the duration (or interval) for each integral part in seconds. 
 
 

 
 

Figure 4. Euler’s approximation 
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