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 This paper investigates the synchronization problem of the unified chaotic 
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1. INTRODUCTION  

Chaos synchronization is an attractive phenomenon involved in a variety of real-life processes. In 
1990, Pecora and Carrol proved [1] that two chaotic systems can synchronize. This means that one system 
(slave system), can follow the trajectories of another one (master system), when an appropriate control law is 
applied. Since then, many synchronization schemes have been proposed [2], [3], [4], [5] such as nonlinear 
control [6], nonlinear observer [4], [7], [8] adaptive control [9], [10], [11] active control [12], [13], [14], 
fuzzy control [15], [16], and backstepping control [17], [18]. More recently, in 2002, Lü and Chen et al. [19] 
investigated some specific chaotic systems and described them in a unified form known as the unified chaotic 
system. This system plays a very important role in the study of the generalized Lorenz system family [20]. 
Different results related to the unified chaotic system are reported in literature [21], [22], [23], [24], [25]. 

In this paper, we propose a synchronization control scheme based on the concept of compound 
matrices, in order to synchronize two identical but unknown unified chaotic systems. Compound matrices 
[26], [27], have interesting spectral properties making of them a powerful tool for stability study [26], [28]. 
In [27], existence of Hopf Bifurcation in dynamical systems analysis and stability of matrices are investigated 
using the compound matrices formalism.  

The paper is organized as follows. In Section 2, we introduce briefly the unified chaotic system and 
the theoretical tool used in this work, namely the compound matrix method. In Section 3, robust 
synchronization control scheme is proposed for identical but unknown master and slave unified chaotic 
systems. Obtained results are tested through numerical simulations, in Section 4. 
 
 
2. PROBLEM STATEMENT 

The unified chaotic system [19] can be expressed by the following differential equations: 
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where 1x , 2x  and 3x  are state variables and   a constant parameter. 

For   varying continuously in [0, 1], the whole family of systems is chaotic [29]. It includes, in particular, 
the canonical Lorenz [30], Chen [31] and Lü [29] chaotic systems respectively for   0, 1 and 0.8. 

Let system (1) be the master system and define the slave system as 
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where 1y , 2y  and 3y  are state variables of the slave system,   the parameter introduced for the master 

system. Given the error vector 1 2 3( , , )Te e e e  defined by 

 

i i ie y x   , 1..3i  , (3)  

 

1u , 2u  and 3u  are the control laws to be designed such that the following error dynamical system (4) is stable 
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Define the extended state vector ( )i 

 
as 

 

1 2 3 1 2 3( , , , , , )Tx x x y y y   (5) 
 
and the matrices T  and N

 
by 
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such that the error vector (3) and the dynamical error chaotic system (4) can be expressed by 
 

e T  (8) 
 

(.)e N u   (9) 
 
with 
 

(.)u K   (10) 

and 3 6(.) ( (.))ijK k  R  is a non constant control gain matrix to be calculated such that (9) is stable. 
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Assume, furthermore, that there exists a matrix 3 6(.) ( (.))ijA a  R such that 

 
(.) (.) (.)N K A T   (11) 

 
Therefore, the dynamical error system (4) can be reduced to 
 

(.)e A e  (12) 

 
Our aim consists on expressing matrix A(.) entries, which depend on those of matrix K(.), then calculating the 
gain matrix K(.) such that system (12) is stable. In the sequel, we use, for simplicity, the notation ijk instead 

of (.)ijk . 

 
 
3. PROPOSED ROBUST SYNCHRONIZATION SCHEME OF THE MASTER-SLAVE UNIFIED 

CHAOTIC SYSTEM 
 

3.1.  Basic Idea 
Synchronization between the master system (1) and the slave system (2) is equivalent to the stability 

of the dynamical error system (12). The stability study of the the characteristic matrix (.)A of system (12) is 

performed based on the compound matrix method. Related preliminary notions are introduces in the 
following. 

Let ( )nM R be the linear space of matrices of size n x n with entries in R  and let A be a matrix in 

( )nM R and k an integer in [1, n]. We note by   the exterior product in nRn.  

Definition 1 [26], [27]: The additive compound matrix [ ]kA  of A , with respect to the canonical basis in the 
thk exterior product space k n R is a linear operator on k n R and can be defined on a decomposable element 

1 2 ... kv v v    by 

 

[ ]
1 1

1

( ... ) ... ...
k

k
k i k

i

A v v v Av v


       , 1 ... n
kv v   R  (13) 

 
Relations between entries ( ija ) of A and those of [ ]kA  ( ija ) are linear. 

Let i be an integer in [1, k
nC ]. If we note by (i) = ( 1,..., ki i ) the thi member in the lexicographic ordering of 

integer k-tuples such that 11 ... ki i n    , we can obtain the additive compound matrix 

entries from the following result. 
 
Proposition 1 [26], [27]: 
 

1 1
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0 ( ) ( ) .

k k

r s

i i i i

r s
j i s

ij

r

a a if i j

a if exactly one entry i of i does not occur in j
a

and j does not occur in i

if i differs from j in two or more entries



  

 





  (14) 

 
In particular, we have [1]A A , [ ] ( )nA trace A  and for A 3 ( )M R  
 

11 22 23 13
[2]

32 11 33 12

31 21 22 33

a a a a

A a a a a

a a a a

  
   
   

 (15) 

 
Definition 2 [27]: Let .  a vector norm on ( )nM R and A a matrix in ( )nM R . 
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The Lozinskiǐ measure (logarithmic measure)  of A  with respect to .  is defined by 

 

0

1
( ) lim

h

I hA
A

h




 
  (16) 

 
As examples, Lozinskiǐ measure of a matrix A  with respect to the three common vector norms   

1 ii
x x , 

2

2 ii
x x   and sup iix x


  are 

        

1
,

( ) sup( )jj ij
j i i j

A a a


   , 2 ( ) ( )
2

TA A
A s 

 and 
,

( ) sup( )ii ij
i j j i

A a a


    (17) 

 
where ( )s A denotes the maximum real part of the eigenvalues of A . 

Compound matrices present a powerful tool for the stability study of matrices. The following result will be us
ed in the sequel. 
Theorem 1 [27]: if ( 1) det( ) 0n A   then A  is stable if and only if there exists a Lozinskiǐ measure  on

( )mM R such that [2]( ) 0A  , 2
nm C . 

According to theorem 1, the stability of the characteristic matrix (.)A  of system (12) can be studied through 

its determinant and its second compound matrix. 
 
3.2.  Dynamical Error System Stability Study Based on Compound Matrices 

 By solving equation (11), we obtain the characteristic matrix (.)A  of the dynamical error system 

 

11 12 13

21 22 1 23

31 1 32 33

25 10 25 10

(.) 28 35 29 1

8 1

3 3

k k k

A k k x k

k x k k
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 (18) 

 
from which is deduced the second compound matrix as expressed in (14) 
 

11 22 1 23 13

[2]
1 32 11 33 12
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4 11
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 (19) 

 
In addition, we obtain relations between entries of matrix (.)K which is a block interdependent matrix 

 

14 11 15 12 16 13

24 21 25 22 26 1 1 23

34 31 35 1 1 32 36 33

k k k k k k

k k k k k y x k

k k k x y k k k

     
       
       

 (20) 

 
Referring to the compound matrix entries and the determinant of matrix A(.), we propose, by the use of 
theorem 1, the following results. 
Theorem 2: Global synchronization is achieved between unified chaotic systems described by (1) and (2) 
independently of the parameter , if the following control law is applied 
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1 1 1 1

2 1 2 2 1 1 3

3 1 1 2

( )( )

(1.16 2.28 1.16 )( ) ( )

( )

u x x y

u x x y y x y

u x y y



 

   


      
  

 (21) 

 
where 15.33  and 44.50  . 

Proof: 
All diagonal elements of the compound matrix A[2] depend on k11 and k22. Let look for a gain matrix involving 
only k11 and k22 and consequently k14 and k25. By substituting all other ijk  elements in A  by 0, matrices A and 

A[2] become 
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The determinant of matrix A(.) is given by 
 

3 2
11 22

2
1 11 22 11 22

2 2
1 11 1 22 11 22 11

29 25
det( (.)) 50 ( 195)

3 3
1

( 25 1730 77 70 )
3

80 8 8
10 720

3 3 3

A k k

x k k k k

x k x k k k k

 



     

    
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By applying theorem 1, using the Lozinskiǐ measure with respect to |.|1, system (11) is stable if the following 
inqualities are satisfied 
 

















 

11 22 14 11 0k k x       (25a) 

1 11

76 38
28 35 0

3 3
x k         (25b) 

22

11 86
25 10 0

3 3
k        (25c) 

                          

3 2
11 22

2
1 11 22 11 22

2 2
1 11 1 22 11 22 11

29 25
50 ( 195)

3 3
1

(( 25 1730 ) 77 70 )
3

80 8 8
10 720 0

3 3 3

k k

x k k k k

x k x k k k k

 



   

     

      

 (25d) 

 
Inequalities (25a), (25b) and (25c) are sufficient conditions guarantying that and (25d) is related to the 
determinant of matrix A(.). 
Left-hand sides of inequalities (25a), (25b) and (25c), can be majorated given that 0    1.  
Furthermore, polynomial inequality (25d) can be satisfied when all monomials are non positive.   
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Conditions (25a), (25b), (25c) and (25d) can be therefore reduced to 
 







 
11 146 / 3k x   (26a) 

22 60k   (26b) 

11 2229 25 57k k   (26c) 
 
The gain matrix entry k11 can be chosen in the form 
 

11 1k x    with 
46

15.33
3

  
 

(27) 

 
Substituting (26c) in (27), it comes 
 

22 1 1

29 29 57
1.16 1.16 2.28

25 25 25
k x x        (28) 

 
and a possible choice of the gain matrix entry k22 is 
 

22 11.16 1.16 2.28k x      with 0   (29) 

 
Given the constraint on the parameter  and the new expression of k22, (26c) holds for every  > 44.50. 
Finally, by calculating the other entries of the gain matrix K(.), according to (20), and using the relation the 
control law expression of theorem 2 is retrieved. 
 

6

1
i ij j

j

u k 


  (30) 

 
Note that  and  represent tuning parameters for the designed controller used to enhance system 
performances. An optimal choice of these parameters is done through trial and error process.  
 
 
4. SIMULATION RESULTS 

In this section, 3 cases are considered to show the effectiveness of the proposed method:   = 0 
(Lorenz chaotic system),  = 0.8 (Lü chaotic system) and  = 1 (Chen chaotic system). Corresponding 
simulation results are represented respectively in figure 1, 2 and 3. 

 
 

 
 

Figure 1. State trajectories of master and slave systems for  = 0. Control is activated at time t=1. 
 
 
Differential equations are solved using the fourth-order Runge–Kutta method with a time step size 
equal to 0.001.  
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Figure 2. State trajectories of master and slave systems for  = 0.8. Control is activated at time t=1. 
 

 
In all simulations, the constant parameters   and   are respectively chosen equal to 15.5 and 55. Different 

initial conditions are considered for the master and the slave systems and are respectively fixed to (-2, -1, 2) 
and (1, 0, 0.6). In the three cases, we can notice that the trajectories of the controlled slave system 
synchronize with those of the master system. Numerical simulations have shown the effectiveness of the 
proposed method. 
 
 

 
 

Figure 3. State trajectories of master and slave systems for  = 1. Control is activated at time t=1. 
 
 
Unlike other reported results, as in [24], [32] and [33], the control law designed in this work is independent 
of the chaotic system parameter . For this reason it’s qualified as robust. Moreover, for the specific cases of 
Lorenz, Chen and Lü chaotic systems, the performed simulations indicate that synchronization is achieved 
faster than in other previous works [23], [24], [32]. 
 
 
5. CONCLUSION  

In this paper, is investigated the synchronization of identical, but unknown, master and slave unified 
chaotic systems. The proposed synchronization scheme is based on compound matrices formalism. The 
obtained control law is independent of the unknown system parameter and is consequently efficient for all the
family of considered chaotic systems. Numerical simulations are provided to illustrate the capability of the 
proposed method which can be applied to a large class of chaotic systems, with or without uncertainties. 
A possible extension of this work is the synchronization of two different unknown unified chaotic systems. 
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