
International Journal of Electrical and Computer Engineering (IJECE) 
Vol. 5, No. 1, February 2015, pp. 64~70 
ISSN: 2088-8708      64 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Detection of Atrial Fibrillation using Autoregressive modeling 
 
 

K. Padmavathi* and K. Sri Ramakrishna** 
*Department of ECE,GRIET, India 

**Departmrnt of ECE,VRSEC, India 
 
 

Article Info  ABSTRACT

Article history: 

Received Sep 14, 2014 
Revised Dec 11, 2014 
Accepted Dec 28, 2014 
 

 Atrial fibrillation (AF) is the common arrhythmia that causes death in the 
adults. We measured AR coefficients using Burgs method for each 15 second 
segment of ECG. These features are classified using the different statistical 
classifiers: kernel SVM and KNN classifier. The performance of the 
algorithm was evaluated on signals from MIT-BIH Atrial Fibrillation 
Database. The effect of AR model order and data length was tested on the 
classification results. This method shows better results can be used for 
practical use in the clinics. Keyword: 
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1. INTRODUCTION 

Computerized electrocardiogram classification can help to reduce health care costs. ECG results 
indicate the presence of AF alarming the status of patient’s heart. During AF, the hearts atria are quicker than 
normal beating. As the blood is not ejected completely out of atria, there might be chances of formation of 
blood clots in the atria resulting in increased risk of stroke. Electrocardiogram (ECG) is one of the useful tool 
for AF detection. AF can be detected by observing three main morphological features in the ECG as shown 
in Figure 1. They are 

 P wave absence. 
 Instead of P waves fluctuating waveforms (f-waves). 
 Heart rate irregularity. 
There are several methods to detect the features of AF [9]. Methods based on RR interval are 

proposed in [1], [2]. P wave based methods are presented in [1], [25]. The RR interval, P wave based 
methods have some limitations [8]. When the ECG changes quickly between rhythms or when Atrial 
Fibrillation takes place with regular ventricular rates, the methods based on RR interval fail in accurate 
detection [2]. Detecting the absence of P wave is difficult due to its small amplitude [25]. To study the atrial 
activity during AF, frequency domain techniques have been proposed in [22], [19], [21], [20]. Ventricular 
activity needs to be canceled before applying FFT. In presence of noise [20] this cancellation process may be 
difficult and involves high computation. Morphological features are difficult to detect because they change 
from patient to patient. From statistical features (AR features) we can easily classify AF signals. AR 
coefficients [24] are the simplest and best features for AF classification. This paper emphasizes on the use of 
AR modeling to discriminate between Non-AF and AF waves. Previous studies claim that, the usage of AR 
coefficient features yield better results than original time series features [24], [23]. 
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Figure 1. (a) Normal Synus Rhythm; (b) Atrial Fibrillation 
 
 

 
 

Figure 2. ECG Classification flow chart analysis 
 
2. METHOD 

 
2.1. Data 

The proposed algorithm is estimated based on the data segments collected from MIT-BIH Atrial 
Fibrillation Database [16]. The AF classification flow diagram as shown in Table 1. 
 
 

Table 1. MIT-BIH Record Numbers 
Normal Data AF Data 

16265, 16272, 16273, 
16420, 16483, 16539, 
16773, 16786, 16795, 
17052, 17453, 18177, 
18184, 19088, 19090, 
19103, 19140, 19830. 

 

04015, 04043, 04048, 
04126, 04746, 04908, 
04936, 05091, 05121, 
05261, 04426, 06453, 
06995, 07162, 07859, 
0787, 07910, 08215, 
08219, 0837, 08405 

08434, 08455. 

 
 
2.2. Noise Removal 

The first step in our algorithm is dividing the signal into desired length. After segmentation, we 
considered each segment as a column of a matrix for compact notation and used sgolay filtering [15] to 
remove the baseline wander present in the signal as shown in Figure 3. 
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Figure 3. Up signal: Baseline noise signal, Down signal: Baselinewander removed signal 
 
 
2.3. Feature Extraction 
 
2.3.1. Computation of AR coefficients 

Autoregressive model is based on the principle of linear prediction.In AR model [17] each sample is 
predicted based on the linear combination of previous samples. Let f1, f2, f3, ..., fn be the time series. The pth 
order autoregressive time series (written as AR(p)) of F(n) is given by the the equation. 
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Where P is the model order (n) is assumed to be white Gaussian noise with zero mean and variance 2. The 
AR model parameters j are calculated using Yule-Walker, Burgs methods and the selected model order 
experimentally. 
 
2.3.2. Yule-walker Method (YW) 
 

߳ሺ݊ሻ ൌ ሺ݊ሻܨ െ  ෠ሺ݊ሻ (2)ܨ
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j is predicted to minimize error (n). Mean square value of the error will be minimum if 
డா

డఈೕ
ൌ 0 
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R = r (6) 
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= R-1r  (7) 
 
2.3.3. Burg’s method 

Input signal F(n), n=1, 2, ..., N, and let us consider the backward and forward linear predictions of 
order k = 1, 2, ...m 
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where m and m are the forward and backward prediction coefcients respectively 
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Where m and m are the forward and backward prediction residuals. Note that m = 1m = 1 by definition. 
The FIR prediction error filter or the lattice filter is given by the set of recursive equations 
 

fm(n) = fm-1 n + kmbm-1 (n – 1) (12) 
 

bm(n) = kmfm–1(n – 1) (13) 
 
m=1,2,3....p. Where Km are the reflection coefficients of the mth recursion step. The initial values of the 
residuals are f0(n) = b0(n) = f(n) 
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m(k) = m–1(k) + kmm–1(k – m) (15) 

 
m(0) = 1; m(m) = km, 
where m=1 to p and k=1 to m. 
All-pole prediction coefficients method excel in comparison to the autocorrelation method because they 
decrease the total prediction errors and the data sequence is not subjected to any window function.The 
advantage of the former method is that it is computationally efficient, stable and has high frequency 
resolution. The selection of the Autoregressive model order is of foremost importance in the classification of 
AF. The correct number of Autoregressive coefficients are determined using trial and error method. The 
coefficients of order 4, 8, 16 are used for our study. 
 
2.4. Classification 

The performance of two different classifiers SVM and k-NN are obtained with the AR coefficients 
as input. 
 
2.4.1. Kernel Support Vectror Machines (KSVM) 

A kernel Support Vector Machine [26] is a supervised machine learning technique applicable for 
classification. It is an example for non-probabilistic binary linear classifier, established from Statistical 
Learning Theory [27]. It exhibits high accuracy and has capability to deal with high dimensional data 
sequences. The support vector machine makes use of pattern recognition among two point classes by Support 
Vectors (SV). 
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Kernels are functions that performs some mathematical operations on x1,x2 depending on the selection of the 
kernel function. 

 (16) 
 

 (17) 
 
Gaussian kernel can be expressed as 
 

(18) 

 
 

 
 

Figure 4. Kernel trick 
 
 
Linear kernel can be expressed as 
 

 (19) 
 

 (20) 
 
kernel functions can be applied to non-linear data so that non-linear features are converted into linear features 
as shown in Figure 4. By using kernel trick features can be represented in a high dimensional feature 
space.Linear classifier methods used to produce non-linear classification is the major advantage of kernels.As 
ECG is an one dimensional signal, x1 is x2 are the features of a two distinct ECG recordings. Linear and 
Gaussian kernels are applied on the ECG signal with SVM classifier. 
 
2.4.2. K-Nearest Neighbour (KNN) 
In the K-nearest neighbors rule, a new vector y of a new class is classified based on the distance from nearest 
mean vector. The distance from vector y and the centroid of the mth cluster zl is calculated as the Euclidean 
distance 
 

ܵ௠ ൌ ඩ෍ሺ ௟ࣳ െ ௟ݖ
௠ሻ௭

௡

௟ୀଵ

 (21) 

 
m is the cluster index, n is the number of the parameters used and l the parameter index. Vector y can be 
classified in to class k at which sm is minimum. We selected the value of k as 1. 
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3. RESULTS 
The 5,15 and 30 second length sequences from each recording are considered and AR coefficients 

are calculated. The effect of model order on classification results is investigated. For the SVM and K-NN 
classifiers, 280 recordings are given for training (2/3 of total recordings) and 93(1/3 of total recordings) are 
given for testing. Three modeling orders are used to differentiate the proposed method with other methods. 
Classification accuracies for different model orders and different lengths are shown in 2 to 4 Tables. 
The results of these methods are shown in Tables 2 to 4. It is evident that the burg’s method with KNN 
classifier shows best results among the two classifiers irrespective of the length of data sequence for model 
order 8. 
 
 
4. CONCLUSION 

In this paper the use of AR modeling for Atrial Fibrillation arrhythmia detection is examined. A 
comparison of the performance of SVM and kNN classifiers on signals from MIT-BIH Atrial Fibrillation 
Database is depicted. Analysis effect of various model order’s for different data segment lengths is 
performed. Among the two classifiers KNN with Burg’s method achieved the best results.The minimum 
misclassified segments were achieved in 5, 15, 30 second segments for the model order 8,which proves to be 
the best classification obtained.Burg’s method shows good results for short data segments with SVM 
classifier,Yule Walker method shows good results for data segments of length 30 seconds for model order 6 
with KNN classifier. Selecting the model order and segment length depends on the required precision and 
availability of the computational resources.This algorithm can be used for real time detection of AF 
signals.The former procedures for feature extraction such as ventricular activity cancellation and detection of 
R peak, which are tedious in nature can be eliminated. 
 
 

Table 2. Classification for Model order 4 
Accuracy 

Data length YW+SVM Burg+SVM YW+KNN Burg+KNN 
5 Sec 76.9 92.3 46.1 38.4 
15 Sec 92.3 76.9 92.3 92.3 
30 sec 92.3 92.3 76.9 76.9 

 
 

Table 3. Classification for Model order 6 
Accuracy 

Data length YW+SVM Burg+SVM YW+KNN Burg+KNN 
5 Sec 76.9 92.3 53.8 61.5 
15 Sec 84.6 100 69.2 92.3 
30 sec 92.3 100 100 92.3 

 
 

Table 4. Classification for Model order 8 
Accuracy 

Data length YW+SVM Burg+SVM YW+KNN Burg+KNN 
5 Sec 76.9 92.3 84.6 100 
15 Sec 84.6 100 84.6 100 
30 sec 92.3 100 92.3 100 
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