
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 1, February 2015, pp. 55~63
ISSN: 2088-8708  55

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

An Improved Design of Linear Congruential Generator based
on Wordlengths Reduction Technique into FPGA

Hubbul Walidainy, Zulfikar

Department of Electrical Engineering, Syiah Kuala University

Article Info ABSTRACT

Article history:

Received Oct 22, 2014
Revised Dec 12, 2014
Accepted Dec 30, 2014

 This paper exposes an improved design of linear congruential generator
(LCG) based on wordlengths reduction technique into FPGA. The circuit is
derived from LCG algorithm proposed by Lehmer and the previous design.
The wordlengths reduction technique has been developed more in order to
simplify further circuit. The proposed design based on the fact that in
applications only specific input data were used. Some nets connections
between blocks of the circuit are ignored or truncated. Simulations either
behavior or timing have been done and the results is similar to its algorithm.
Four best Xilinx chips have been chosen to extract comparison data of speed
and occupied area. Further comparison of occupied area in terms of flip-flop
and full adder has been made.In general, the proposed design overcome the
previous published LCG circuit.

Keyword:

FPGA
Improve LCG
Linear Congruential Generator
Wordlengths reduction
Xilinx Copyright © 2015 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Hubbul Walidainy
Departement of Electrical Engineering, Syiah Kuala University,
Jl Syech Abdur Rauf, Darussalam, Banda Aceh, Indonesia.
Email: hwalidainy@unsyiah.ac.id

1. INTRODUCTION

The use of random numbers has become habit in daily activities since long times ago. Right now,
even a cheap kid’s toy contains a random number circuit inside it. For instance, in a toy that mimic mobile
phone will ring variation types of sound when the same button is pressed many times.

Random numbers theory has been re-introduced in the last several decades. Linear congruential
generator (LCG) that introduced 1954 by Lehmer [1] is the oldest and the most commonly used
pseudorandom number generator (PNG) [2]. Park and Miller suggested good parameters for LCG [3]. Their
idea has been used in Matlab for generating uniform random numbers until now [4].

Many other theories of random number generators have been proposed and also used in many
applications. Blum Blum Shub, Wichmann-Hill, Complementary multiply with carry, Inversive congruential
generator, ISAAC (cipher), Lagged Fibonacci generator, Linear feedback shift register, Maximal periodic
reciprocals, Mersenne twister, Multiply-with-carry, Naor-Reingold Pseudorandom Function, RC4 PRGA,
Well Equidistributed Long-period Linear, and Xorshift are some of the common and well-known methods
[5]-[8].

Hardware for generating random number is also available as well as their algorithms. Hardware has
been used since 2008. LETech is the fastest among all hardware for generating random numbers, this
hardware has been developed and marketed since 2008 [9], [10].

Research for searching suitable algorithms of generating random numbers is well establishing field
until now. Researchers use field programmable gate arrays (FPGA) for testing their algorithms. Some of
good design has been realized into hardware and sold into the market [5], [10].

Initially, The algorithm of LCG that has been combined with Monte Carlo method used for
generating non uniform random number in Matlab [11]. Later, the development has been implemented in
FPGA [12]. In the paper, the increment factor (c) has been ignored (c=0). Later then, the technique for

  ISSN: 2088-8708

IJECE Vol. 5, No. 1, February 2015 : 55 – 63

56

generating random number based on full LCG algorithm also available [13]. The paper exposed the LCG
circuit design without ignoring the increment factor. We analyze that the technique may be improved further.

In this work, we design the more efficient circuit by reducing wordlengths of some input data.
Moreover the technique proposed in [13] will produce slightly different random numbers than the original
LCG algorithms.

The rest of the paperis organized as follows. Section 2 deals with theory of LCG algorithm. The
design of improved LCG circuit for FPGA implementation and nets modifications are explained in section 3.
The deep analysis and implementations are presented insection 4. Finally, the conclusions are summarized in
section 5.

2. THEORY

2.1. Linear Congruential Generator

There is a popular method and most used to generate random number called linear congruential
generator. The idea was introduced by Lehmer according to sequential formula in (1) [1].

mcaXX nn mod)(1 

 (1)

Where m is modulus, ais multiplier, c is increment. Parameters a, c and m have to be chosen

carefully in order to avoid repetition of similar numbers before m [6]-[8]. Park & Miller suggested a good
results will be obtained by choosing c=0 [3].

The modulusm should be a large prime integer, multiplier a will be an integer in the range 2, 3, . . . ,
m-1. The cycle length of LCG will never exceed modulus m, but it can be maximized using three following
conditions [7], [14]:

 c is relatively prime to modulusm,
 multipliera-1 is a multiple of every dividing modulusm,
 multipliera-1 is a multiple of four when modulusm is a multiple of four.

2.2. Parameters in Common Use of LCG

The requirements mentioned in the previous section are referred to Hull-Dobell theorem [15]. LCG
are able to produce the pseudorandom number that can pass test of randomness. The condition is sensitive in
choosing the good parameters c, m, and a.

In history, poor choices had been led to the ineffective realizations or implementations of LCG
itself. As an example of the poor parameters choice is RANDU (see Table 1), this method was commonly
implemented in the early 1970 and cause to many results that are currently being questioned.

Random numbers resulted by LCG will be more efficientwhen the modulus approach a very high
numbers, often reach the maximum computer (machine) ability such as m=232 or m=264. Table 1 lists the
parameters of LCGs in commonly use, including built in functions such as rand() that used in runtime
libraries of various compilers [2].

Table 1. Parameters in common used for LCG applications [2]
Source m (multiplier) a (increment) c

Numerical Recipes 232 1664525 1013904223
Borland C/C++ 232 22695477 1
glibc (used by GCC) 231 1103515245 12345
ANSI C: Watcom, Digital Mars, CodeWarrior, IBM VisualAge C/C++ 231 1103515245 12345
Borland Delphi, Virtual Pascal 232 134775813 1
Microsoft Visual/Quick C/C++ 232 214013 (343FD16) 2531011 (269EC316)
Microsoft Visual Basic (6 and earlier) 224 1140671485 (43FD43FD16) 12820163 (C39EC316)
RtlUniform from Native API 231 − 1 2147483629 (7FFFFFED16) 2147483587 (7FFFFFC316)
Apple CarbonLib, C++11's minstd_rand0 231 − 1 16807 0
C++11's minstd_rand 231 − 1 48271 0
MMIX by Donald Knuth 264 6364136223846793005 1442695040888963407
Newlib 264 6364136223846793005 1
VAX's MTH$RANDOM, old versions of glibc 232 69069 1
Java's java.util.Random, glibc [ld]rand48[_r]() 248 25214903917 11
RANDU 231 65539 0

IJECE ISSN: 2088-8708 

An Improved Design of Linear Congruential Generator based on Wordlengths … (Hubbul Walidainy)

57

3. LCG CIRCUIT DESIGN

3.1. General Circuit of LCG
Figure 1 show the LCG circuit proposed in [13]. The designed circuit used equal wordlengths of n

for connection between blocks. The designed circuit consist of (assumed modulus=2n):
 One n x n-bit multiplier
 One n-bit 2-to-1 multiplexer
 One n-bit adder
 3 x n enable buffers (B1, B2, B3)
 n buffers (B4)

For certain applications, the design may be improved further. By using the same circuit blocks, we
proposed a circuit for a more efficient area. This design requires some assumptions.

The design based on the fact that in application only specific multiplier and increment were used
[2]. Here as an example, we design an efficient circuit for modulus of maximum 8-bit.It is assumed that the
wordlength of multiplier use 3-bit and the wordlength of incrementc use 2-bit data. Figure 2 show a slight
modification circuit of the previous design.

Figure 1. General circuit of linear congruential generator [13]

Figure 2. Proposed circuit design of a more efficient area (n=8)

The proposed circuit in the Figure 2 is also controlled by two signals enable and reset. The
controlling process is equal to the previous design. Initially, signal reset have to be HIGH (enable=LOW) in
order to clear the stored values in the buffer B4. Signal enable determine whenever the operation should be
started. Pre-defineddataof seed, increment and multiplier have to be available at the input ports just before
signal enable goes HIGH (resetmust be LOW). Afterthat, each times the clock goes HIGH, a random number
is produced. Figure 3 views the circuit configuration of the two controlsignals.

  ISSN: 2088-8708

IJECE Vol. 5, No. 1, February 2015 : 55 – 63

58

Figure 3. Signal controls of the designed LCG circuit [13]

In practice, the proposed circuit will also reduce number of net connections between CE1, CE2 and buffers.

3.2. Wordlengths Reduction
The circuit of Figure 2 used equal wordlengths everywhere. Therefore, the multiplier block have to

be implemented with an 8x8-bit circuit (assumed n=8). However, the proposed design requires smaller
circuit. Figure 4 shows the net connections configuration of the multiplier block.

Figure 4. Proposed wordlengths reduction in multiplier’s block

Based on arithmetic rules and to reduce area [16], the multiplication of B4 (8 bit) and B1 (3 bit)
would require 10 bit at the output. In the design, we simply truncated (disconnected) the twohigher nets of
X(8) and X(9). Similarly, we can do the same thing to the nets of the adder. Again, based on arithmetic rules
and to reduce area [15], the addition of X (8 bit) and B2 (2 bit) would require 9 bit at the output. But, in this
case only one net (M(8)) disconnected as shown in the Figure 5.

Figure 5. Proposed wordlengths reduction in adder’s block

4. SIMULATION AND COMPARISONS
In order to evaluate whether the design works properly, we simulate the proposed circuit in Figure 2.

Both behavior and timing simulation have been done using Xilinx ISE Design Suite 14.2.Some important
information of synthesis result is presented. The comparison to the previous design of area and speed have
been done to several Xilinx’s chips.

The implementations have been done using three wordlengths 8-bit, 16-bit, and 31-bit. The
wordlengths for seed and output are equal to wordlengths design. Meanwhile, some input use smaller
wordlengths which are multiplier 3-bit, increment 2-bit.

IJECE ISSN: 2088-8708 

An Improved Design of Linear Congruential Generator based on Wordlengths … (Hubbul Walidainy)

59

4.1. Behavior Simulation
Figure 6 shows input data and results of behavior simulation using modulusm = 28, seed = 7,

multiplier a = 3 and increment c = 1. It can be seen that the result numbers are random starting from 7 and all
numbers are smaller than 28.

Figures 7 and 8 show behavior simulation results of modulusm = 216 and m = 231, respectively. The
simulations also produce numbers which never exceed the modulus.

Figure 7. Simulation behavior result of proposed design using m=216, seed=7, a=3, c=1

Figure 8. Simulation behavior result of proposed design using m=231, seed=7, a=3, c=1

4.2. Synthesis Results
Some important data after synthesis step of the proposed design circuit using modulusm=28 into

Xilinx Zynq chip are:

HDL Synthesis Report

Macro Statistics
Multipliers : 1
 8x3-bit multiplier : 1
Adders/Subtractors : 1
 11-bit adder : 1
Registers : 4
 2-bit register : 1
 3-bit register : 1
 8-bit register : 2
Multiplexers : 1
 8-bit 2-to-1 multiplexer : 1

===
Advanced HDL Synthesis Report

Macro Statistics MACs : 1
 8x3-to-8-bit MAC : 1
Registers : 19
 Flip-Flops : 19
Multiplexers : 1
 8-bit 2-to-1 multiplexer : 1

Device utilization summary:

Selected Device : 7z010clg400-3
Slice Logic Utilization:
 Number of Slice Registers: 19 out of 35200 0%
 Number of Slice LUTs: 30 out of 17600 0%
 Number used as Logic: 30 out of 17600 0%

Slice Logic Distribution:

  ISSN: 2088-8708

IJECE Vol. 5, No. 1, February 2015 : 55 – 63

60

 Number of LUT Flip Flop pairs used:40

Number with an unused Flip Flop: 21 out of4052%
 Number with an unused LUT: 10 out of 40 25%
 Number of fully used LUT-FF pairs:9 out of 40 22%
 Number of unique control sets: 3

IO Utilization:
 Number of IOs: 24
 Number of bonded IOBs: 21 out of 10021%

Specific Feature Utilization:
 Number of BUFG/BUFGCTRLs: 1 out of 323%

Timing Summary:

Speed Grade: -3

 Minimum period: 2.436ns (Maximum Frequency: 410.526MHz)
 Minimum input arrival time before clock: 0.892ns
 Maximum output required time after clock: 0.511ns
 Maximum combinational path delay: No path found

From HDL synthesis report, the proposed design circuit requires an 8x3-bit multiplier, 11-bit adder,

two 8-bit register, one 3-bit register, one 2-bit register and 8-bit 2-to-1 multiplexer. In terms of slice logic
utilization, the design occupied 19 slice registers and 30 slice LUTs. The distribution of slice logic from total
amount of 40 are 9 for fully used LUT-FF pairs, 10 to unused LUT and 21 for unused flip-flop. The circuit
also requires 3 unique control sets.

The maximum frequency of the circuit limited to around 410.52 MHz when it is implemented into
Zynq. The minimum input arrival time before clock is 0.892 ns. This means the data should be available
(arrive) at input port before that time. The maximum output required time after clock is 0.511 ns.

4.3. Timing Simulation

Figure 9 shows a close view of timing simulation result. The figure show transition between 202 and
95. There are some glitches appears because of the time from clock edge to pads varies. The variation values
are ranging from 8.390 ns to 8.527 ns (post-PAR static timing report).

Figure 9. A close look of timing simulation

post-PAR static timing report
Clock Clock to Pad
 ------------+-----------------+------------+-----------------+------------+------------------+--------+
 |Max (slowest) clk| Process |Min (fastest) clk| Process | | Clock |
 Destination | (edge) to PAD | Corner | (edge) to PAD | Corner |Internal Clock(s) | Phase |
 ------------+-----------------+------------+-----------------+------------+------------------+--------+
 O<0> | 8.390(R)| SLOW | 4.033(R)| FAST |Clock_BUFGP | 0.000|
 O<1> | 8.391(R)| SLOW | 4.035(R)| FAST |Clock_BUFGP | 0.000|
 O<2> | 8.404(R)| SLOW | 4.046(R)| FAST |Clock_BUFGP | 0.000|
 O<3> | 8.440(R)| SLOW | 4.071(R)| FAST |Clock_BUFGP | 0.000|
 O<4> | 8.397(R)| SLOW | 4.037(R)| FAST |Clock_BUFGP | 0.000|
 O<5> | 8.422(R)| SLOW | 4.049(R)| FAST |Clock_BUFGP | 0.000|
 O<6> | 8.425(R)| SLOW | 4.052(R)| FAST |Clock_BUFGP | 0.000|
 O<7> | 8.527(R)| SLOW | 4.155(R)| FAST |Clock_BUFGP | 0.000|
 ------------+-----------------+------------+-----------------+------------+------------------+--------+

IJECE ISSN: 2088-8708 

An Improved Design of Linear Congruential Generator based on Wordlengths … (Hubbul Walidainy)

61

4.4. Comparisons
Four Xilinx chips have been chosen for area and speed comparison between the proposed design

circuit and the previous one. Table 2 viewscomparison of occupied area ofmodulus m=28 (8 bit), m=216 (16
bit) and m=231(31 bit) over Virtex 7, Spartan 6, Kintex 7 and Zynq chips.

Table 2. Occupied area comparison among Xilinx chips

Chips

Area Occupies
8 bit

(Slices/LUTs)
16 bit

(Slices/LUTs)
31 bit

(Slices/LUTs)
[13] Proposed [13] Proposed [13] Proposed

Virtex 7 16/10 19/30 32/18 36/62 92/63 66/122
Spartan 6 16/10 19/30 32/18 33/19 92/63 67/122
Kintex 7 16/10 19/30 32/18 35/62 92/63 65/122

Zynq 16/10 19/30 32/18 35/62 92/63 65/122

Based on synthesis report, for m=28, the required area (both slices and LUTs) of the proposed design
is more than the previous design. This is slightly different for m=216, the number of slices is about three times
and the number of LUTs is almost equal. When the proposed design is implemented using m=231, the number
of slices is less, even though the number of LUTs is still more. Table 2 shows this phenomena.

Table 3 views the speed comparison of the proposed design and the previous one. It can be seen that
the proposed design is faster. The maximum frequency that can be reached varies from 154 MHz to 411
MHz. As the wordlengths increases, the maximum frequency decreases. Spartan 6 is the slowest chip, Kintex
7 and Zynq are the best choice.

Table 3. Maximum frequency comparison among Xilinxchips

Chips
Maximum Frequency (MHz)

8 bit 16 bit 31 bit
[13] Proposed [13] Proposed [13] Proposed

Virtex 7 270 376 270 361 139 337
Spartan 6 154 248 154 158 73 209
Kintex 7 309 411 270 397 158 369

Zynq 272 411 272 397 140 369

In order to make a more detail comparison, the area of the designed circuit and the previous one

arere-implemented,analyzed andwe put some calculations of the synthesis results of the proposed and the
previous methods. Table 4 up to Table 9 describe more about area comparison. The area is represented in
terms of usedflip-flop and full adder.

From Tables 4 and 5, the numbers of flip-flip and adder of the proposed design is about a half of the
previousone. The proposed design become more and more efficient for higher modulus as can be seen
inTables 6 and 7 for m=216 and Tables 8 and 9 for m=231.

Table 4. Calculation of area based on synthesis results for modulus 8 bit [13]
Circuits Bit Size Counts Flip-Flops Full Adders

Multipliers 8x8-bit 1 - 64
Adders 16-bit 1 - 16

Registers 8-bit 4 32 -
Total 32 80

Table 5. Calculation of area based on synthesis results for modulus 8 bit (proposed design)
Circuits Bit Size Counts Flip-Flops Full Adders

Multipliers 8x3-bit 1 - 24
Adders 11-bit 1 - 11

Registers 8-bit 2 16 -
3-bit 1 3 -
2-bit 1 2 -

Total 21 35

  ISSN: 2088-8708

IJECE Vol. 5, No. 1, February 2015 : 55 – 63

62

Table 6. Calculation of area based on synthesis results for modulus 16 bit [13]
Circuits Bit Size Counts Flip-Flops Full Adders

Multipliers 16x16-bit 1 256
Adders 32-bit 1 - 32

Registers 16-bit 4 64
Total 64 288

Table 7. Calculation of area based on synthesis results for modulus 16 bit (proposed design)
Circuits Bit Size Counts Flip-Flops Full Adders

Multipliers 17x3-bit 1 - 51
Adders 20-bit 1 - 20

Registers 17-bit 1 17 -
16-bit 1 16 -
3-bit 1 3 -
2-bit 1 2 -

Total 38 71

Table 8. Calculation of area based on synthesis results for modulus 31 bit [13]
Circuits Bit Size Counts Flip-Flops Full Adders

Multipliers 31x31-bit 1 - 961
Adders 32-bit 1 - 32

Registers 31-bit 4 124
Total 124 983

Table 9. Calculation of area based on synthesis results for modulus 31 bit (proposed design)
Circuits Bit Size Counts Flip-Flops Full Adders

Multipliers 31x3-bit 1 - 93
Adders 32-bit 1 - 32

Registers 31-bit 2 64 -
3-bit 1 3 -
2-bit 1 2 -

Total 69 125

The proposed design is derivated from the habit of input data, it might be varied based on LCG
application. For sure, one thing that can be learned from the design is there are space to reduceoccupied area
and improve the speed whatever application it is.

5. CONCLUSIONS
An improved design and implementation of linear congruential generator into FPGA have been

done successfully. It is assumed that the designed circuit is used for specific applications. In general, the
proposed design circuit is far faster and less in used flip-flop and full adder. In term of slices and LUTs based
on FPGA synthesis, the proposed design requires more than the design published in [13]. It can be justified,
the previous one used equal wordlengths while the proposed circuit implement various wordlengths.
Therefore, the number of slices and LUTs increases for the proposed design.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge the financial support from Syiah Kuala University, Ministry of

Education and Culture, Indonesia under project Hibah Bersaing, No. 498/UN11/S/LK-BOPT/2014, 26 May
2014.

REFERENCES
[1] D.H. Lehmer, “Random number generation on the BRL high speed computing machines”, by M. L. Juncosa. Math.

Rev. 15 (1954), 559
[2] http://en.wikipedia.org (2014) - Linear congruential generator, 10th March

http://en.wikipedia.org/wiki/Linear_congruential_generator
[3] S.K. Park, and K.W. Miller, “Random number generators: good ones are hard to finnd”, Association for Computing

Machinery, 31(10), pp: 1192-2001, 1988.

IJECE ISSN: 2088-8708 

An Improved Design of Linear Congruential Generator based on Wordlengths … (Hubbul Walidainy)

63

[4] [Numerical Computing with MATLAB, By Cleve B. Moler, SIAM,2008.
[5] http://en.wikipedia.org (2014) - List of random number generators, 11th March

http://en.wikipedia.org/wiki/List_of_random_number_generators
[6] N. Harald, “Random Number Generation and Quasi-Monte Carlo Methods”, Society for lndustrial and Applied

Mathematics, Philadelphia, 1992.
[7] A note on random number generation, Christophe Dutang and Diethelm Wuertz, September 2009
[8] Wolfram Mathematica ® Tutorial Collection, RANDOM NUMBER GENERATION, 2008
[9] http://www.letech.jpn.com (2014) - Genuine Random Number Generator (GRANG), 10th March

http://www.letech.jpn.com/rng/about_rng_e.html
[10] http://en.wikipedia.org (2014) - Comparison of hardware random number generators, 10th March

http://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
[11] Zulfikar, “Generating Non Uniform Random Numbers Using Residue and Rejection Methods”, Transaction of

Journal Rekayasa Elektrika, Vol. 8 No. 2, October 2009
[12] Zulfikar, “FPGA Implementations of Uniform Random Number based on Residue Method”, Transaction of

Journal Rekayasa Elektrika, Vol. 11 No. 1, April 2014
[13] Zulfikar and Hubbul Walidaiy, “Design of Linear Congruential Generator based on Wordlengths Reduction

Technique into FPGA”, Transaction of International Journal of Electronics Communication Computer
Engineering, Vol. 5 No. 4, pp: 809-813, July 2014

[14] D.E. Knuth, “The Art of Computer Programming: seminumerical algorithms”, Vol. 2,3rd edition edn,
Massachusetts: Addison-Wesley, 2002

[15] F. Severance,“System Modeling and Simulation”, John Wiley & Sons, Ltd. p. 86,2001
[16] Zulfikar, et al., “FPGA Based Complete Set of Walsh and Inverse Walsh Transforms for Signal Processing”,

Transaction of Electronics and Electrical Engineering Journal, Vol.18. No. 8, Pp: 3-8, October 2012

BIOGRAPHIES OF AUTHORS

Hubbul Walidainy. He was born in Banda Aceh, Aceh, Indonesia, in 1973. He graduated from
Electrical Engineering Department at Gadjah Mada University, Yogyakarta, Indonesia, in 1998.
The Master Degree in Electrical Engineering from Gadjah Mada University, Yogyakarta,
Indonesia, in 2003.
He joined in the Department of Electrical Engineering, Syiah Kuala University, Aceh, Indonesia
in 2000, as a teaching staff. His current position is the head of Telecommunication Laboratory.

Zulfikar. He was born in Beureunuen, Aceh, Indonesia, in 1975. He received his B.Sc. degree in
Electrical Engineering from North Sumatera University, Medan, Indonesia, the M. Sc. Degree in
Electrical Engineering from King Saud University, Riyadh, Saudi Arabia, in 1999 and 2011,
respectively
He joined as teaching staff in the Department of Electronics at Politeknik Caltex Riau,
Pekanbaru, Indonesia in 2003. He served as head of Industrial Control Laboratory, Politeknik
Caltex Riau from 2003 to 2006. In 2006, he joined the Electrical Engineering Department, Syiah
Kuala University. His current position is head of Digital Laboratory, and his current research
interests include VLSI design and System on Chips (SoC).

