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 The longitudinal spatial hole burning (LSHB) effect has been known to limit 
the performance of distributed feedback (DFB) semiconductor lasers to 
achieve a better dynamic signal mode operation (DSMO). So, in order to 
ensure a stable (DSMO), we propose a novel device design of two electrode 
DFB lasers with longitudinal variation in the coupling coefficient (distributed 
coupling coefficient (DCC)), the structure also contains a phase shifted in 
middle of the cavity. By means of the finite difference time domain (FDTD) 
numerical method, we analyze dynamic response of our structure and we also 
compare the results with the conventional two electrode DFB laser (TE-
DFB). The numerical simulation shows that, a better dynamic signal mode 
has been achieved by TE-DCC-DFB lasers in comparison with TE-DFB laser 
due to its better and high side mode suppression ratio (SMSR). Therefore, the 
TE-DCC-DFB lasers will be useful to extend the transmission distance in 
optical fiber communication systems.
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1. INTRODUCTION  

Advanced semiconductor laser are key devices in high speed modern optical communication 
systems [1-7]. Among many different laser structures, the distributed feedback (DFB) structure has been 
widely used in semiconductor lasers to achieve a stable DSMO due to their small size, high optical output 
power, fast response and low threshold current [8-12]. Therefore, Introducinga / 4 phase shift in the grating 
structure is effective for achieving stable signal mode operation because of high side mode suppression ratio 
[13-14]. However, the presence of the phase shift when the coupling coefficient is large or at higher injection 
currents, generally causes spatial non uniformities of photon and carrier densities or effective index along the 
cavity[15], this phenomenon called spatial hole burning (SHB) effect[16], This SHB is found to enhance the 
side mode. 

Usually a variety of methods can be used to solve this issue, the first one consisted in enlarging the 
threshold gain margin by introducing gain coupling mechanism or constructing distributed coupling 
coefficient gratin (DCC-DFB) [17-20], the second is to weaken the no uniform distribution of carriers, for 
example they can be obtained by utilizing multiple discrete phase shift (MPS-DFB) [21] or by introducing 
longitudinal chirped grating for bragg period [5], [22] and  [23]. 

In our previous work, we propose a two electrode DFB laser with stronger centre coupling and a 
/ 4 phase shift in the center of the cavity (TE-DCC-DFB), this structure is another way to improve the 

output parameters such as SMSR and power output. So, in this paper, we have simulated the dynamic 
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parameters of TE-DCC-DFB laser and compared it with conventional TE-DFB laser in order to show the 
superiority of our structure. 

The remainder of this paper is organized as follow: time domain model including the coupled model 
equations and numerical simulations method are briefly described in section 2. Simulations results of 
proposed structure, namely those concerning dynamic characteristics in section 3. Finally, we closed the 
paper by a brief conclusion in section 4. 
 
 
2. THEORY AND DESCRIPTION OF MODEL  

The laser structure analyzed in our model is depicted schematically on Figure 1. The structure is 
related to two electrodes, the first electrode extend from 0z   to / 2z L . Contrariwise the second 
electrode, from / 2z L to z L , the bias current IA and IB are injected independently into the cavity. The 
structure is divided into four sections, the length of the center and side sections is Lc and Ls (Lc(s) is the length 
of the section with coupling coefficient ( )c sk ), respectively. The normalized coupling coefficient of side 

sections and of center sections are s sk L and c ck L , respectively. 

 

 
Figure 1. Schematic diagram of TE-DCC-DFB laser  

 
 

Taking into account the longitudinal change of the coupling coefficient in the structure i.e k  is z 
dependent. Thus, for TE-DCC-DFB laser, the coupling coefficient ratio as: 
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The spatiotemporal dynamic of the DFB is characterized by the carrier number density N  and the 

electric field of  
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Where F  and B  represent the slowly varying envelopes of the forward and backward waves, which 

are coupled through the laser structure and 0 is the reference frequency. 0  is the propagation constant at 

bragg frequency, given by 0 /   , with   is the period of the grating 

      The rate equations of the carrier density and time dependent coupled wave equations of the slowly 
varying envelop are given by [17]: 
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With gC is the group velocity, s is the optical loss coefficient, q is the electron charge, the 

parameter  stands for the electrons lifetime, V is the cavity volume,   is a non-linear coefficient to take 
into account saturation effects, ( )k z  is the coupling coefficient. Also, ,A BI is the uniform current bias of 

electrode denoted by the subscript, B is the bimolecular recombination coefficient, C  is the Auger 

recombination coefficient,  z  is the phase shift at z position,  ,N z t  is the carrier density, 0N is the 

carrier density at transparency and  2 2
( , ) ( , ) ( , )P z t F z t B z t    (7) is the photon density [17].  ,g z t is the 

material gain, given by [17]: 
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Where   is the optical confinement factor, 0A  is the differential gain. The ( , )z t  represent the 

frequency detuning defined as [17]: 
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With 0  is an approximate emission wavelength. The effective refractive index can be expressed as [17]:  
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Where o
effn  is the effective index at transparency and H represent the phase amplitude coupling factor. 

The spontaneous emission fields coupled into the forward and backward waves are G , thus the 
autocorrelation function defines as [17]: 
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Where   is the spontaneous coupling factor, K is the Petermann coefficient. 

For a computerized calculation, the coupled equations (5) and (6) are solved numerically using the 
finite difference time domain (FDTD)[24],then this method is based on solving the coupled wave equations 
in the time domain by a first order difference approximation to the partial difference[24-25]. So, we can 
showed that : 
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The FDTD method can be utilized to simulate the dynamic responses of the DFB laser by solving 

the coupled equations (12) and (13). Therefore, in this work we have developed a FDTD algorithm, which 
has been applied to those equations.  The numerical procedure of this method involves dividing the cavity 
length into several uniform grating sub-sections 200S  of equal length / .gz L S C t    .  
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3. NUMERICAL RESULTS AND DISCUSSIONS   
The main goal of this paper is the simultaneous assessment of dynamic characteristics of TE-DCC-

DFB laser structure and the comparison with the conventional TE-DFB laser structure, Table 1 shows the 
parameters used in these simulations.  In the following discussion the performance comparison between the 
two structures under various system parameters will be previewed in detail. 

First, we present the dynamic representation of the laser output power, Figure 2.a and b shows the 
evolution of the photon density as a function of time at z L  and also illustrates the optical output spectrum 
for the conventional TE-DFB laser. Both sections are biased sufficiently as 86AI mA for section A (left 

section sL + left section cL ) and 75BI mA  for section B (right section cL + right section sL ) 

To facilitate comparison, the transient response and the optical output spectrum of the TE-DCC-
DFB laser are also show in Figure 3.a and b. the optical spectrum is obtained by performing fast Fourier 
transform (FFT) for optical output field within [3,4]ns. 
 
 

Table 1.  parameter values used in simulations 
parameters symbol value 

Linear recombinaison   4.10-9s-1

Bimolicular recombinaison B  1016m-3s-1 

Auger recombinaison   C  3 .10-41m-6s-1 

Differential gain 
0A  

2,7.10-20m2 

Internal loss 
s  

3000m-1 

Effective index transparency 0
effn  

3.2 

transparency Carrier density 
0N  

1.1024m-3 

Linewidth enhancement factorc 
H  

5,4 

Group velocity 
gC  

3.108/3,7 ms-1 

Petermann factor K  1 

Peak wavelength at transparency
0  

1,5648.10-6m 

Optical confinement factor   0.35 

Grating period    227.039.10-9m 

      Non linear gain coefficient   1,5.10-23 

Lsaser cavity length L  500.10-6m 

Volume for active region V  90.10-6m 

Spontaneous coupling factor   5.10-5 

group index 
gn  

3.7 

 

(a) (b) 
 

Figure 2. (a) Transient response ( 86AI mA and 75BI mA  ) and (b) Output optical spectrum for                              

conventional TE-DFB lasers 
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However, a careful study of Figures 2.a and 3.a show that, the lasing output of the conventional TE-
DFB laser starts after passing needed time to satisfy the threshold condition and it starts with strong 
amplitude as the consequence of beating between two modes.For TE-DCC-DFB laser, the lasing output starts 
to oscillate in small amplitude and after approximately t=1s, stable oscillations are observed. Then, it can be 
observed in the Figure 2.b and 3.b, for the conventional TE-DFB laser, the existence of different frequencies. 
This is because the effect of the modes beating in optical power [17]. Also there are side modes in addition to 
the main one and their amplitudes are comparable to the main mode and they cannot be ignored, also the 
SMSR is estimated to be 8 dB. Furthermore, for the other structure the SMSR is more than 43dB due to the 
single mode output power, the mode beating came from the onset of side mode in the cavity as the result of 
LSHB [17]. Indeed The conventional TE-DFB laser cavity is rapidly subjected to LSHB, but the TE-DCC-
DFB laser cavity seems to be widely prevented against it. 

 

(a) (b) 
 

Figure 3. Longitudinal (a) Transient response ( 86AI mA  and 75BI mA   ) and (b) Output optical spectrum 

for TE-DCC-DFB lasers. 
 
 

In order to understand the effects of LSHB on the power along the cavity, the Figure 4.a shows the 
magnitude of forward, backward and total internal power along the cavity for TE-DFB laser and for 
comparisons, we also show the case of conventional TE-DCC-DFB laser structure in Figure 4.b 
It is obvious from both figures that the internal optical power increased at the middle of the structure. Hence, 
for the TE-DCC-DFB the optical output power is increased in right of cavity to 11mW i.e higher power 
output compared to theother structure, the reason is that more photons accumulated at the right facet of cavity 
[25]. 
 

(a) (b) 
 

Figure 4. Wavelength Forward, backward and total internal power along the cavity. (a) TE-DFB lasers and 
(b) conventional TE-DCC-DFB lasers. 
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The Longitudinal profiles of carrier density and power can also indicate the occurrence of multi 
mode operation in lasers structures. Hence, the Figure 5 displays the Longitudinal profiles of carrier density 
in different moments for the twostructures, the first one is taken at t=1 ns i.e before the modes beating and 
the second at t=2 ns i.e during the beating. 

 

(a) (b) 
 

Figure 5. Longitudinal carrier density profiles in two different instants of the transient response of (a) 
conventional DFB lasers and (b) TE-DCC-DFB lasers. 

 
 

We see that, for both structures, there is a discontinuity of the carrier density at the middle of the 
cavity (the interface between the left and right electrode). This discontinuity is reasonable as long as there is 
sufficient resistance between these two sections A and B [25]. For the conventional TE-DFB laser, it is 
observed that the carrier profile is modified between the two instants, this is because of the occurrence of a 
second mode in the cavity. In contrast for the TE-DCC-DFB laser structure, the carrier density longitudinal 
profile remains clamped. 

 

 
 

Figure 6. Normalized carrier density versus time for conventional TE-DFB and TE-DCC-DFB. With 
injection currents 86AI mA   and  75BI mA  

 
 

Now, In the Figure 6 we present this Normalized carrier density as a function of time.It is obvious 
from this figure, that the dumping of transient of the TE-DCC-DFB laser is better than for the conventional 
TE-DFB laser structure and also, the first structure stabilized at t=0,8ns,  however the second  stabilized at 
t=1.75ns.Also we observed that the value of N in TE-DCC-DFB laser after stabilization is much less than 
the other structure, the reason for this phenomenon can be explained in [26]. Finally, to show the effects of 
the change structure’s parameters on side mode suppression ratio (SMSR), Figure 7 displays a comparison 
between the two structures. We see clearly that, when the biasing current is less than 30BI mA , the both 
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structure manifest a good SMSR. However, when the biasing is above 30mA, the SMSR for the conventional 
TE-DFB laser degraded rapidly to a minimum value equal to 10dB. In contrast to TE-DCC-DFB laser, the 
good signal mode operation can be maintained significantly within brad current rage, the maximum values of 
SMSR reach is 45dB. The results of this figure shows that, the TE-DCC-DFB laser has given a better 
transient SMSR, this indicates that the LSHB also plays a role in SMSR [27-28]. 

 

  
 

Figure 7. Dependence of SMSR on biasing current for the conventional TE-DFB lasers and TE-DCC-DFB 
lasers. 

 
 

4. CONCLUSION  
In this paper and with the help of a computer algorithm based on the FDTD model, we have 

presented a traveling wave large signal simulations of dynamic characteristics of TE-DCC-DFB laser. The 
spontaneous emission, spatial hole burning, longitudinal variation of carrier and photon densities have been 
taken into consideration in the modeling. The conventional TE-DFB laser which is characterized by its 
uniform coupling coefficient along the cavity, and the TE-DCC-DFB laser with a / 4 phase shift in center 
cavity and stronger center coupling coefficient have been investigated and compared.On the other side, the 
results of simulations showed that, the first structure is not in single mode operation, but the second one acts as a 
single frequency source with an output power equal to 11mW and SMSR will be more than 45dB. In addition 
the characteristics of TE-DCC-DFB laser structure have improved the signal mode stability. Therefore the 
results shows that the best dynamics signal mode can be achieved by the TE-DCC-DFB lasers. 
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