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 In this paper, an improved robust model predictive controller (RMPC) is 
proposed based on model reference adaptive system (MRAS). In this 
algorithm, using the MRAS a combinational RMPC controller for three 
degree freedom satellite is designed such that the effect of moment of inertia 
uncertainty and external disturbance is compensated on the stability and 
performance of closed loop system. Control law is a state feedback which its 
gain is obtained by solving a convex optimization problem subject to several 
linear matrix inequalities (LMIs). To avoid the actuators saturation an input 
constraint is incorporated as LMI in the mentioned optimization problem. In 
addition to, using the MRAS system the effect of input disturbance is 
rejected on the system. The advantages of this algorithm are needless to exact 
information from system’s model, robustness against model uncertainties and 
external disturbance. Results from the simulation of the system with the 
proposed algorithm are presented and compared to generalized incremental 
model predictive control (GIPC). The results show that the suggestive 
controller is more robust than the GIPC method. 
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1. INTRODUCTION  

Recently, model predictive control (MPC), due to its various applications in constrained, 
multivariable and complex systems, has been received many attentions. Since the uncertainty is not explicitly 
investigated in the structure of predictive controllers, the performance and robustness of the system may not 
be satisfied in the presence of the uncertainty, though this method has many advantages. Since 1990, many 
studies have been devoted to considering robustness in the model predictive control algorithm.  In [1], based 
on the dynamic state-feedback control law, an RMPC controller is designed for uncertain linear systems. This 
algorithm has a high computational burden. In [2], based on the output feedback control law, an off-line 
RMPC controller is designed for systems with two types of uncertainty, i.e. norm-bounded and polytopic 
uncertainties. An off-line RMPC controller with larger applicable area is designed for uncertain nonlinear 
systems, in [3]. Although the off-line RMPC algorithms greatly reduce the online computational burden, its 
optimality is largely degraded as compared with online RMPC. In [4], an off –line RMPC controller is 
designed for linear systems with bounded state disturbance and measurement noise in which, noise and 
disturbance belong to a convex set. Practical examples of these algorithms in process control are given in [5] 
and [6]. In the mentioned algorithms, design of RMPC controller is given as infinite horizon objective 
function minimization for a set of uncertain models. In order to solve this problem, an upper bound is 
assumed for the objective function, and a state feedback or output feedback control law is achieved by 
minimizing objective function subject to some LMIs which guarantee the robustness of the system. Using 
invariant ellipsoid concept, input constraints are also embedded as LMI in the mentioned optimization 
problem, in order to prevent saturation of the actuators. Although the disturbance issue is discussed in [4], 
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this problem exists in another them. In this paper, this problem is solved by combination of MRAS system 
with RMPC algorithm. During recent years, model predictive control has been significantly used and 
developed in other industries such as aerospace industry. In [7], a predictive controller is designed to control 
the spacecraft which is tracking and chasing the target spacecraft. During launching satellites, launch vehicles 
impart high levels of vibration to satellite. In order to isolate the whole satellite from vibration, a model 
predictive control is proposed in [8]. Moreover, in [9], an explicit MPC is designed for satellite attitude 
control system. 

In this paper, using an on-line RMPC controller as well as MRAS system, a three-axis 
combinational RMPC controller is proposed for satellite attitude control system (ACS) in the presence of 
moment of inertia uncertainty, external disturbance and input constraint. The regarded actuator is reaction 
wheels with input bound of 1 N.m. This paper is prepared in 5 sections as follow: After introduction, in 
section 2, the problem design of combinational RMPC controller is proposed. In section 3, the linear and 
nonlinear models of satellite are achieved. Section 4 presents the simulation results of this algorithm. 
Moreover, simulation results of the combinational RMPC algorithm are compared with that of GIPC 
algorithm [13]. Finally, a summary of results is provided in section 5. 
Note 1.  Symbol * denotes symmetric terms in a symmetric matrix.   
 
 
2. ROBUST MODEL PREDICTIVE CONTROL BASED ON MRAS 
 
2.1 RMPC Formulation 

Consider the linearized time-variant system as: 
 

 

 
Where  and  denote the control signal, state vector and system output, respectively.

is a predetermined set, polytope set, which includes the system uncertainties. Co is called the convex hull. 
This means that if  then, for , we have: 

 
 (3) 

 
Assumption: suppose that the pair (A,B) is stablizable by  state feedback control law (it means that there 
exist a matrix F so that A+BF is a stable matrix). 
Let and be the system state and control action at sampling time k. then consider a cost 

function as: 
 

 (4) 

 
Where k is the current time.Q1 and  are symmetric positive definite weighting matrices. In the RMPC 
algorithm, the goal is to obtain optimal control sequence to minimize a robust 

performance objective function subject to model uncertainties as: 
 

 (5) 

 
This problem is a min-max optimization problem. The maximization operation is finding 

based on which the largest , that is called worst case of , is computed. 

Although this problem is convex for finite m, it is not computationally tractable. To solve this problem an 
upper bound on the worst case is derived. Then it is minimized by adopting the following control law: 
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 (6) 

 
Where the state feedback gain  is obtained to the mentioned convex optimization problem. The closed 

loop system is shown in Figure 1. 
 
 

 
 

Figure 1. Block diagram of the RMPC method 
 
 
In the following, at first an important lemma which is used in the next parts is introduced. Then the state 
feedback gain  is computed. 

Lemma 1. (Schure complement lemma). [10] Suppose Q(x) and R(x) are symmetric positive definite matrix 
functions and matrix s(x) is linear into parameter x. the following inequalities are equivalent: 
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Consider a Lyapunov function 0),()()( TT PPkPxkxxV  of the state )()|( kxkkx  of the system (1). 

Suppose that V satisfies inequality (8) and it guarantees the robust stability of system (1) with the uncertainty 
set (2).  
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According toLyapunov theory if 0)|(  kx then 0))|((  kxV . By summing (8) from 0i  to i

and using the Lyapunov stability theory, we have: 
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Using lemma 1, the relation (9) can be rewritten as: 
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Where 01  PQ  . The robust stability condition is satisfied for system (1) with uncertain set (2) if the 

following inequality is satisfied: 
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Proof. Substitute the relations (1), (6) and variables 1 Qp   and FQY   in (8). Then Multiply both side 

of the result by Q and use lemma 1 to obtain the LMI (11). 
Remark 1. To apply the physical limitations on the control input the following LMI can be added to the LMI 
sets (10) and (11): 
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2.2 Tracking Problem 

Suppose that the goal is to track a reference signal )|()( kikCxkw rr  . In this case, to track the 

reference signal w(k), a cost function in (13) can be minimized. 
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Where CQCQ T

1

~
  is a positive definite matrix and )|()|( kikxkikxX r  is a shifted state. 

Therefore, without waste of generality problem the control law is obtained by )|()|( kikFXkiku  . 

 
2.3 Disturbance Rejection 

In most of the time, the state feedback control law cannot reject disturbance while the presence of 
disturbance is unavoidable.  In this paper, an online MRAS system is used to solve this problem. In the 
MRAS algorithm, the desired performance of the system is specified by a reference model. Then the input 
disturbance is estimated by the adaptive system and the parameter of the controller is adjusted based on the 
error which is the difference between the outputs of the system and model. The key problem with MRAS is 
to specify the adjustment mechanism so that a stable system is obtained and the mentioned error brings to 
zero. In the following, the adjustment mechanism is derived by using the MIT rule.   
Lemma 2. (MIT rule) [11]. Consider a closed loop system in which the controller has one adjustable 
parameter . Let y, ym and e denote system output, model output and the error between them, respectively. 
Here, the parameter   is adjusted by minimizing a loss function as: 
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To make J small, it is reasonable to change the parameters in the direction of the negative gradient of J as: 
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Figure 2 shows the block diagram of the RMPC method based on MRAS algorithm. 
 
 

 
 

Figure 2. Block diagram of the RMPC method based on MRAS algorithm 
 
 
3. THREE DEGREE OF FREEDOM SATELLITESTATESPACE MODEL  

In this section, three degree of freedom rigid satellite model is presented. A microsatellite is shown 
in Figure 3 [12]. Axes XB, YB and ZB are satellite’s body axis frame. The angles roll )( , pitch )(  and yaw

)( are defined by successive rotations around the body axes XB, YB and ZB.  Parameters p, q and r are the 

angular rate. 
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Figure 3. Microsatellite reference and body coordinates [12] 
 
 
The nonlinear state model of the satellite is according to the following relation [12]: 
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Where Mx, Myand Mz are the input torques, Parameters 

yx II ,  and 
zI  are the moment of inertia around the 

body axes.The linearized state space model can be obtained by the Jacobian method and the satellite 
parameters in Table 1[12]. 
 
 

Table 1. Satellite parameters [12] 
Parameters Description Value 

xxI  Moment of inertia (x-axis) 1.928 kgm2 

yyI  Moment of inertia (y-axis) 1.928 kgm2 

zzI  Moment of inertia (z-axis) 4.953 kgm2 

Mx, My , Mz Input to satellite 1 N.m 

0  Initial roll Euler angle 0.362 rad 

0  Initial pitch Euler angle 0.524 rad 

0  Initial yaw Euler angle -0.262 rad 

p  Body roll rate 0 rad/s 
q  Body pitch rate 0 rad/s 

r  Body yaw rate 0 rad/s 
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Where A=Jacobian (f(x),x) and B=Jacobian(f(x),u) are Jacobian matrices of nonlinear system with respect to 

state vector Trqpx ][   and input vector u=[Mx,.My,.Mz], respectively. The discrete-time state 

space model is obtained by discretizing the linearized system at sampling time 10 ms. 
 
 
4. NUMERICAL SIMULATION 

In this section, the performance and robustness of the proposed RMPC and GIPC algorithms for 
ACS is evaluated. The detail of GIPC algorithm is described in [13].  
The moment of inertia variation of the microsatellite is an important problem in ACS design. The ACS must 
be robust enough against the moment of inertia uncertainty. It is considered to be 20% perturbation with 
respect to their nominal values as: 
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In this paper, the attitude control hardware includes three reaction wheels oriented at body axes.  The reaction 
wheel dynamic is: 
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4.1 The Performance of Controllers without Constraint 

Figures 4.a and 4.b demonstrate the step response and control effort of ACS for the linear model 
using the RMPC and the GIPC methods without constraint.  
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Figure 4.a. Euler angles comparison of RMPC and GIPC algorithms without constraint 
 
 

 
 

Figure 4.b. Control actions comparison between the RMPC and GIPC algorithms without constraint 
 
 
The simulation results show that a large overshoot occurwhich it is led to actuator saturation. 
 
4.2 The Performance of the Controllers with Input Constraint 

In the previous subsection, we did not consider the control constraint due to the robustness analysis. 
Now, the input constraint is explicitly considered in optimization problem of controller design procedure. 
Suppose that the control action is limited by 1|| u . According to Figs 5.a and 5.b, in this condition the 

system remains stable and the attitude control signalsare significantly reduced for two both of controllers, 
since the overshoot is reduced due to input constraint. 

 
 

 
 

Figure 5.a. Euler angles comparison of RMPC and GIPC algorithms with presence of constraint 
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Figure 5.b. Control actions comparison between the RMPC and GIPC algorithms with presence of constraint 
 
 

4.3 The Performance of the Controllers against Nonlinearity 
The linear and nonlinear models of the ACS have different behaviors. Figures 6 and 7 show the step 

response and control effort of RMPC and GIPC algorithms. According to the simulation results, although both 
controllers have a good performance, the control torques in the RMPC algorithm is smoother than the GIPC. 

 

 
 

Figure 6.a. Comparing the step response of ACS for the linear and nonlinear model using the RMPC method 
 

 
 

Figure 6.b. Comparing the control actions of ACS for the linear and nonlinear model using the RMPC 
method 
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Figure 7.a. Comparing the step response of ACS for the linear and nonlinear model using the GIPC method 
 
 

 
 

Figure 7.b. Comparing the control actions of ACS for the linear and nonlinear model using the RMPC 
method 

 
 

4.4 The Effects of Disturbance on the Controllers Performance 
In this subsection, the capability of disturbance attenuation of the RMPC and the GIPC algorithms is 

evaluated by input disturbance )]10([5.0)(  tukT on the nonlinear model.  According to Figures 8 and 9, 

unlike the RMPC algorithm, the GIPC method rejects this disturbance.  
 

 
 

Figure 8. The GIPC performance against nonlinearity 
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Figure 9. The RMPC performance against nonlinearity 
 

 
According to the subsection C from previous part, to solve this problem the MRAS algorithm is incorporated 
into the RMPC strategy. Figure 10 shows the block diagram of combinational RMPC. Figure 11 illustrates 
the step response and control effort of the nonlinear model of ACS using the combinational RMPC method. 
Obviously, the effect of external disturbance on Euler angles and control actions is removed. 
 
 

 
 

Figure 10. The block diagram of combinational RMPC 
 
 

 
 

Figure 11. The combinational RMPC performance against nonlinearity 
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control actions in the GIPC method is saturated. In contrast, in the proposed RMPC method the control 
actions close to zero after a little oscillation and they are not saturated. 

 

 
 

Figure 12. The step response and control effort of ACS using RMPC method in the +70% perturbed 
condition 

 

 
 
Figure 13. The step response and control effort of ACS using GIPC method in the +70% perturbed condition 
 
 
5. CONCLUSION 

In this paper, a three axis combinational RMPC controller is designed for ACS system so that the 
closed loop system is robust against the moment of inertia uncertainty, input constrain and external 
disturbance. The control law is a state feedback that its gain is obtained by solving a convex optimization 
problem subject to several LMIs which they guarantee the asymptotic stability of system. To avoid the 
undesirable effect of reaction wheels’ saturation the input constrains are added to the mentioned LMIs. 
Moreover, to access disturbance attenuation of the RMPC strategy, the MRAS algorithm is incorporated into 
the RMPC algorithm. The effectiveness of the proposed controller was evaluated by means of extensive 
simulations using the nonlinear model of ACS. The experiments in this paper show that although the RMPC 
algorithm in the absence of the disturbance has a high robust performance, in the presence of disturbance the 
controller cannot stabilize the closed loop system. For this reason, the more robust version RMPC by using 
the MRAS algorithm is proposed in this paper. Furthermore, although both controllers combinational RMPC 
and GIPC have a good performance against uncertainty and disturbance, the proposed RMPC has the better 
attenuation capability for disturbance and uncertainty parameters. This means that the robustness in the 
combinational RMPC is more than the GIPC. 
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