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 Automatic image annotation has emerged as an important research topic due 
to the existence of the semantic gap and in addition to its potential 
application on image retrieval and management.  In this paper we present an 
approach which combines regional contexts and visual topics to automatic 
image annotation. Regional contexts model the relationship between the 
regions, whereas visual topics provide the global distribution of topics over 
an image. Conventional image annotation methods neglected the relationship 
between the regions in an image, while these regions are exactly explanation 
of the image semantics, therefore considering the relationship between them 
are helpful to annotate the images. The proposed model extracts regional 
contexts and visual topics from the image, and incorporates them by MCDM 
(Multi Criteria Decision Making) approach based on TOPSIS (Technique for 
Order Preference by Similarity to the Ideal Solution) method. Regional 
contexts and visual topics are learned by PLSA (Probability Latent Semantic 
Analysis) from the training data. The experiments on 5k Corel images show 
that integrating these two kinds of information is beneficial to image 
annotation. 
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1. INTRODUCTION  

With the advent of digital imaging and data storage, searching and indexing large image databases 
efficiently and effectively has become a challenging problem [1-5]. In order to solve the problem, there are 
three distinct approaches coexist in the literature [1-3]. 

The first approach is the traditional Text Based Image Retrieval (TBIR). In this approach images are 
annotated manually with keywords or captions and then retrieved using a conventional text search engine. 
This technique uses text to capture semantic content of images and allows query by text. However, expensive 
labor makes this solution difficult to be extended to large image databases. Furthermore, human annotations 
are usually too subjective and ambiguous.The second type is Content Based Image Retrieval (CBIR), in 
which queries are usually based on visual examples. In CBIR various low-level visual features are extracted 
from each image in the database and image retrieval is formulated as searching for the best database match to 
the feature vector extracted from the query image. Although this process is accomplished quickly and 
automatically, the results are seldom semantically relevant to the query example due to the notorious 
semantic gap [6]. The semantic gap highlights the wide difference between semantic concept used by humans 
to interpret images and low level features.The third approach is Semantic Based Image Annotation (SBIR). 
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To bridge the semantic gap, Automatic Image Annotation (AIA) techniques have attracted a lot of interest in 
SBIR systems. 

Automatic image annotation is a process to automatically generate textual words to describe the 
content of untagged images from annotated images according to image similarities. The goal of automatic 
image annotation is to find the relation between low level visual features and high level semantic concepts. A 
main problem in automatic image annotation is to create a model to assign keywords to an image in order to 
describe it. In this regard it is necessary to train a set of images have already been annotated by humans 
manually. These annotations are semantic concepts made up of simple keywords that described the content of 
the image. Image analysis techniques are used to extract features from the images such as color, texture and 
shape in order to model the distribution partitions of the image. The next step is to extract the same feature 
information from an unseen image in order to compare it with all previously created models (one for each 
keyword). The result of this comparison yields a probability value for each keyword included in the image..  

Literature review that has been done author used in the chapter "Introduction" to explain the 
difference of the manuscript with other papers, that it is innovative, it are used in the chapter "Research 
Method" to describe the step of research and used in the chapter "Results and Discussion" to support the 
analysis of the results [2]. If the manuscript was written really have high originality, which proposed a new 
method or algorithm, the additional chapter after the "Introduction" chapter and before the "Research 
Method" chapter can be added to explain briefly the theory and/or the proposed method/algorithm [4]. 

 
1.1. Relatedworks 

In recent years, many algorithms has introduced for AIA. We can roughly classify them into 4 
categories: The Vector Space Models: The vector space model [7,8] framework is a popular technique in 
information retrieval especially in text retrieval. Generally, documents are represented as vectors, each of 
which contains the occurrences of keywords within the document in question. The length of the vectors is 
equal to the vocabulary size. These approaches treat images as documents, and build visual terms which are 
analogous to keywords, from the image feature descriptors. Some of the methods in this category include: 
SvdCos method, Saliency-based semantic propagation, and cross-language latent semantic indexing based 
approach. Classification Methods: Classification approaches [9-11] for image annotation view the process 
of attaching keywords to images as that of classifying images to a number of pre-defined groups, each of 
which is characterized by a concept or keyword. These approaches pose image annotation as a supervised 
classification problem. Specifically, each keyword is viewed as a unique class. Binary classifiers for each 
class or a multiclass classifier is trained independently to predict the annotations of new images. Given an un-
annotated image, the classification algorithms find its membership and annotate it with the corresponding 
keyword. Multiple annotations can be generated by assuming an image belongs to multiple classes. Some of 
the works in this category include: image linguistic indexing, image annotation using SVM, multiple instance 
learning approaches, non-negative Matrix factorization based approaches. Graph Based Methods: Recently, 
the graph-based methods [12-17] have achieved much success in the image and video analysis domain 
including image annotation. How to build a similarity graph is very important in graph learning. A good 
graph should reflect a deep understanding of the data structure and help to mine potential knowledge as much 
as possible. Some works in this category include: image annotation via graph learning, image annotation 
refinement via graph based learning. Statistical Models: The basic idea of statistical techniques [18-26] is to 
estimate the probabilities of documents related to the query submitted by the user. Documents are then 
ranked according to their probabilities. The main goal of statistical techniques is to learn a model from the 
joint distribution of visual and textual features on the training data and predicting the missing textual features 
for a new image. 

Among the image annotation models classification approaches are the oldest in this domain. But 
statistical models and graph based approaches have more chance. The proposed approach in this paper 
follows statistical based models. So we will review the statistical models that are proposed for automatic 
image annotation.The co-occurrence model proposed by Mori et al. [20] is perhaps one of the first attempts at 
automatic image annotation. They first divide images into rectangular tiles of the same size, and calculate a 
feature descriptor of color and texture for each tile. All the descriptors are clustered into a number of groups, 
each of which is represented by the centroid. Each tile inherits the whole set of labels from the original 
image. Then, they estimate the probability of a keyword W related to a cluster C by the co-occurrence of the 
keyword and the image tiles within the cluster.Duygulu et al. [21] proposed a machine translation model for 
automatic image annotation. They argued that region based image annotation is more interesting because 
global annotation does not give information on which part of the image is related to which keyword. In their 
point of view, the process of attaching keywords to image regions is analogous to the translation of one form 
of representation (image regions; French) to another form (words; English). Indeed, Their Machine 
translation model applies one of the classical statistical machine translation models to translate from the set 
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of keywords of an image to the set of blobs that generated by clustering the image features. Jeon et al. [22] 
proposed Cross Media Relevance Model (CMRM) for automatic image annotation. CMRM benefits the joint 
distribution of keywords and blobs. Each image describe by visual features (blobs) as well as textual 
keywords. In CMRM the probability of observing a set of blobs with a set of keywords estimated. Lavrenko 
et al. [23] proposed a Continues-space Relevance Model (CRM) that improves CMRM by using continuous 
probability density functions to estimate the probability of observing a region given an image. Feng et al. 
[24] modified the above model and proposed Multiple Bernoulli Relevance Model (MBRM) such that the 
probability of observing labels given an image was modeled as a multiple-Bernoulli distribution. In MBRM 
images simply divided into rectangular tiles instead of applying automatic segmentation algorithms.  

There exist two problems in above algorithms. First, most existing algorithms have taken one of two 
approaches, using regional or global features exclusively. Second, conventional approaches consider each 
word separately without the textual context relations. As a result the textual context relations among 
annotation words have been ignored. By textual contextwe refer to co-occurrence relationship among words. 
Wang et al. [25] proposed a model for image annotation that combines global, regional, and contextual 
features by an extended CMRM. They incorporate the three kinds of information to describe image semantics 
to annotate images by estimating their joint probability. Some of the other statistical based models for image 
annotation include: D-CMRM, SDF and Probabilistic semantic model. 

 
1.2. Ourapproach 

There exists an important problem in all of the statistical methods, that all the explained methods 
utilize direct distribution of regions for AIA. However considering the relationship between regions, that 
each of them is an explanation of a word, helps us to improve the final annotation words. So we obtain the 
relationship between regions and instead of using the direct distribution of regions, we utilize the distribution 
of topics between regions for AIA. 

To address the above problem we propose a novel approach for AIA. Typical CMRM only takes 
regional features to describe an image, the extended CMRM incorporates both global and regional features, 
as well as textual context to annotate images. In the approach that we propose, the visual topics have 
described as a global distribution vector of topics in the image, moreover we consider the obtained 
relationship between regions and model the regional contexts as a distribution of topics between regions. 
Both the visual topics and regional contexts are learned by a PLSA approach [27] from the training data. 
Then we integrate these two kinds of information by MCDM approach based on TOPSIS method [28,29]. 
Generally our method includes three steps as follows: 
1. Model the regional contexts or the relationship between the regions as a distribution of topics between 

regions for generating the annotation related to image regions content. 
2. Utilize the visual topics as a global distribution vector of topics to consider the overall image content. 
3. Combining the extracted two kinds of information from the image using the TOPSIS method in MCDM 

algorithm. 
The framework is shown in Figure 1. The images are represented by their regions and collection of 

patches. Our proposed model is learned from the training data based on the two kinds of information, 
regional contexts  B I  and visual topics  H I . 

 
1.3. Paperoutline 

The reminder of this paper organized as follows: Extended CMRM is described in section 2. Our 
proposed model is introduced in section 3. In section 4 experimental results are presented and finally 
concluding remarks are explained in section 5. 
 
 
2. EXTENTED CMRM 

The conventional CMRM [22] considers only one representation of images, i.e. a bag of blobs. To 
deal with images which are not suitable to be represented as a bag of blobs, we need to consider other 
representation as well. So, ECMRM [25] has proposed to use visual topics as another representation. This 
new image representation is combined with the visual blobs representation. Moreover the typical CMRM 
annotates keywords individually without considering the joint distribution of different keywords. To solve 
this problem, textual context is proposed. To annotate an image with multiple keywords, first annotate the 
image with textual contexts and then compose the keywords from the distribution of keywords under each 
textual context. The learning of textual context is based on the PLSA approach [27]. PLSA is proposed to 
automatically learn topics from text documents. Similar to learn topics from text documents, we can also 
learn visual topics from images. 
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Similar to learning topics from text documents, we can also learn visual topics from a collection of 
images. The main point is representing an image as a bag of words [30] similar to the vector representation of 
text documents. In details, we partition an image by a regular grid and take it as an unordered set of image 
patches. Then we extract a 128-D SIFT descriptor [31] and vector-quantize each image patch by clustering 
[32] a subset of patches from the training images, which has proved effective for object recognition [33]. We 
call the set of cluster centers as visual vocabulary. We can then transform an image into a bag of visual words 
by assigning a visual word label to each image patch. Given this bag of visual words representation, it is then 
straightforward to apply PLSA to learn a set of visual topics, each of which is characterized by a multinomial 
distribution of visual words.The ECMRM method annotates a test image I by estimating the joint probability 
of textual contexts C, its visual blobs (regions)  1 2, ,..., mR b b b  obtained by image segmentation [34] and 

the visual topics distribution  H I , which J represents training image and τ is the training set: 

 

 
 

Figure 1. The proposed approach to automatic image annotation using regional contexts and visual topics. 
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Comparing ECMRM with CMRM, there are two points of difference to elaborate. First, the original 

CMRM in annotates an image using only the regional features  1 2, ,..., mR b b b . However, ECMRM uses 

both the regional features R and the global features  H I  which represent the global distribution of visual 

topics in image I. This suggests the ECMRM model combines the global features and regional features. 
Second, CMRM predicts the probability of a single word W directly, while ECMRM predicts the probability 
of a textual context C. This indicates ECMRM does not assume the mutual independence between words 
given the image. Thus, the extended CMRM incorporates the textual context from the training data. 

Textual contexts C, image blobs and visual topics distribution are independent. So that 

  1, ,..., ,mP C b b H I J  can be simplified as: 
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 P b J is estimated as the same as that in CMRM.  P C I is available after learning textual contexts 

on the manual annotations.   P H I J is defined as the Kullback-Leibler divergence [35] between the visual 

topic distribution of I and J: 
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In which klD  is the Kullback-Leibler divergence between two distributions. From the Bayesian 

theory, we know that: 
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Therefore, normalization on   1, ,..., ,mP C b b H I  will give the conditional distribution of textual 

contexts  P C I . The conditional keyword distribution  jP W I  of I is obtained by fusing the keyword 

distribution of the entire textual contexts: 
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3. THE PROPOSED APPROACH 

The notable point is that the relationship between regions is not considered in the ECMRM method. 
We know that each of these regions is explanation of a word and the semantic relationship between these 
regions is more accurate than the semantic relationship between words (textual contexts), which are assigned 
to the image by human. Because these regions have represented the exact content of an image, finally the 
generated keywords are related to the image content. 

 
3.1. Learning Regional Contexts from Images 

Similar to learning topics from text document in the ECMRM method, we can also learn regional 
contexts from a collection of images. Firstly, according to ECMRM method the regions are obtained from 
image segmentation based on objects [34]. We should represent an image as a collection of words, so 
consider an image as a document and assume the objects in an image as words in this document (we consider 
each region as a word). Then apply the PLSA approach developed by Hoffman to reach the relationship 
between regions and instead of the direct distribution of regions in an ECMRM, we utilize the distribution of 
topics between them to AIA. We call these topics, which have described the relationship between regions, 
regional context. 
PLSA approach [27] behaves as follows: 

Suppose we are given a set of text documents  1 2, ,..., nD d d d  each of which is represented by a 

term frequency vector: 
 

 
 

 

In which  ,i jn d w  is the number of occurrence of word jw  in document id , and m is the 

vocabulary size. PLSA assumes that each word in a document is generated by a specific hidden topic kZ , 

where kZ I  and I is the vocabulary of hidden topics. Since kZ  is a hidden variable, the conditional 

probability of a word jw  given document id  is a marginalization over the topics: 

 

       1 2, , , ,..., ,                       6i i i i md n d w n d w n d w   
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                       , 7      
K

j i j k i k i
k

P w d P w Z d P Z d  

 

In which K is the number of hidden topics,  ,j k iP w Z d is the conditional probability of a word jw  

given topic kZ  and the document id ,  k iP Z d
 

is the conditional probability of topic kZ  given id . 

Furthermore, PLSA assumes that the conditional probability of generating a word by a specific topic is 
independent from the document: 

 

                          ,  8j k i j kP w Z d P w Z  

 
Therefore (7) can be simplified as: 
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The model parameters  j kP w Z  and  k iP Z d  can be learned by an EM algorithm [36]. 

 
3.2. Learning Visual Topics from Images 

Similar to learning topics from text documents, we can also learn visual topics from images. The 
notable point is representing an image as a bag of words [30], like to the vector representation of text 
documents. We partition an image by a regular grid and take it as an unordered set of image patches. Then 
we extract a Gabor descriptor [37-39] and vector quantizes each image patch by clustering [32] a subset of 
patches from the training images, which has proved effective for object recognition [33]. Therefore, we 
develop the orientation histogram [40,41] from multi-scale Gabor features because Gabor features are better 
representation than simple gradient features. We call the cluster centers as visual words. Then we can 
transform an image into a bag of visual words by assigning a visual word label to each image patch. We have 
the bag of visual word representation, apply the PLSA to learn a set of visual topics. 

There is a difference between image regions obtained by image segmentation and image patches. 
Image patches that grouped in a topic do not have spatial agglomeration and visual consistency although 
image segmentation groups pixels by its visual property and spatial location. Figure 2 illustrates the image 
regions, image patches and the distributions of regional context and visual topics of an image. Visual topics 
and regional contexts (topics between regions obtained by image segmentation) focus on different aspect of 
an image, so they are complementary to each other and a combination of them is expected to achieve better 
performance. 

 
3.3. Combining Regional Contexts and Visual Topics 

Our method annotates a test image I by combining the regional contexts (the distribution of topics 
between regions)  B I and the visual topics distribution  H I  and considering a given word (W): 

 

                                 ,   , 0, 1,
J

P W B I H I P J P W B I H I J


  

 
Comparing (10) with (1) there is one point of difference to elaborate: ECMRM in (1) annotates an 

image uses both the regional features R and the global features  H I , means that it uses the direct distribution 

of regions. But our method in (10) considers to the relationship between the regions and it uses the 
distribution of topics between regions as a regional contexts  B I . Because the semantic relationship between 

regions is more accurate than the relationship between words, we have ignored the textual context in (1) and 
instead of it we utilize regional contexts. So we utilize both the regional contexts and visual topics together. 
These two kinds of information extract different words, so combining them are useful to create related words 
and consistent to image content. However the conventional methods suppose the conditionally independence 
between the regional information and visual words, but we cannot consider this assumption. To describe this 
point the dependency graph of the image, visual words and regional information is shown in the Figure 3. It 
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is obvious that to obtain the regional information we cannot utilize the image directly and we should use the 
image features domain. Subsequently regional information is dependent to the visual words, because the 
visual words are in this domain too. This dependency stems from that one of the important extracted features 
from the image needed for regional representation is texture which cannot be independent from the visual 
words. 

 
 

 
 

Figure 2. Illustration of two types of information: (A) original image, (B) image regions have obtained by 
segmentation, (C) distribution of regional contexts, (D) Image patches that the patches with the same topic 

are indicated by the same color, (E) distribution of visual topics. 
 
 

 
 

Figure 3. Graph dependency of the image, visual words and regional information. 
 
 
To solve this problem we explain the distribution of test image keywords generally as below 

equation: 
 

                            10j
J

p w I p w J





   

 
This equation is similar to (10), but we utilize j  instead of considering the joint probability of 

 B I and  H I . According to (11) the annotation of a test image is equal to the sum of multiply the 

distribution of training image keywords in their coefficient ( j ). This coefficient calculate the similarity of a 

test image I with the training images, considering to (10) in our proposed model j  is the conditional joint 

distribution of the regional contexts and visual topics. Indeed j  define the contribution of training image 

keywords to create the distribution of test image keywords. We can understand easily that if one training 
image is more similar to the test image I, the distribution of their keywords is similar too, and the 
contribution of that training image or j  should be more. As regards  B I  and  H I  are dependent and to 

simplify (10) and calculate j  or the similarity between the test image and training images we use the 
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MCDM (Multi Criteria Decision Making) approach [28]. MCDM is the selection of the best action from a set 
of alternatives, each of which is evaluated against multiple criteria. This method is commonly used in fields 
different from structural engineering, for example for the resources allocation planning, for ranking the 
sequential patterns and to locate a special facility. Also MCDM was applied to financial investment in 
advanced manufacturing systems. 

Among the MCDM methods, we utilize the TOPSIS (Technique for Order Preference by Similarity 
to the Ideal Solution) method [28, 29]. Some of the advantages of this algorithm is the ability of determining 
any kinds of criteria, the explicitly of its results and decrement the complexity of the parameters. Moreover 
this method has been used to calculate the similarity. In this method two artificial alternatives are 
hypothesized, Ideal alternative: the one which has the best level for all attributes considered.Negative ideal 
alternative: the one which has the worst attribute values. TOPSIS evaluates the alternatives based on the 
closeness to the ideal solutions and farness from negative ideal solutions. 

Inputs to TOPSIS methods are as follows: 
 TOPSIS assumes that we have m alternatives (options) and n attributes (criteria) and we have the 

score of each option with respect to each criterion. In our model the alternatives are training images 
and the criteria are regional contexts and visual topics. Indeed to determine the criteria we should 
introduce some measure to calculate the similarity. We obtain these measures by investigating the 

various experimental results. In the different experiment, we fetch up that   2p B I 
  

 and 

  p B I    increase the precision and      *p B I p H I    has an influence to boost the recall, so 

we specify these measures: 
 

             2
                      ,, 12p B I J p B I J p B I J p H I J 

    
 

 Let 
xij  score of option i with respect to criterion j, we have the mn matrix. 

 Let J be the set of benefit attributes or criteria (more is better). 
 Let J’ be the set of negative attributes or criteria (less is better). 

Step 1: Construct normalized decision matrix. 
 This step transforms various attribute dimensions into non-dimensional attributes, which allows 

comparisons across criteria. 
 Normalize scores or data as follows: 

 

 
2

   for i=1,...,m:j=1,            .  ..           ,n 13
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Step 2: Construct the weighted normalized decision matrix. 

 Assume we have a set of weights for each criterion 
w j  for j=1,...,n . These weights express the 

relative importance of it in respect to the others. Considering the 3 suggested criteria in our model, 
we need to define 3 weights for them: 
 

      
6

        1-
7 7

                14
a
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 Multiply each column of the normalized decision matrix by its associated weight.  
 An element of the new matrix is: 

 

                        15ij ij ijv w r 
 

 
Step 3: Determine the ideal and negative ideal solutions for each criteria. 

 Ideal solution: 
 

        1 ,...,   where v max  if j J:min  if j J                       16n j ij ijA v v v v       
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 Negative ideal solution: 

 

        1 ,...,   where v min  if j J:max  if j J                       17n ij ijA v v v v      
 

 
Step 4: Calculate the separation measures for each alternative (training images). The separation 

(distance) between alternatives can be measured by the n dimensional Euclidean distance. 
 The separation  from the ideal alternative is: 
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 Similarly, the separation from the negative ideal alternative is:  
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Step 5: Calculate iC
 or similarities to the ideal solution ( j

). 
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Note that original TOPSIS chooses an alternative with iC
closest to 1, but in our model we need all 

the value of iC
 for image annotation and generate the keywords of test image, because these values are j

 
or the coefficient of the training images. 

Considering to the suggested criteria, we need to calculate the 
  P B I J

and
  P H I J

. These two 
items are defined as the Bhattacharyya metric distance[42] between the distribution image I and image J: 
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In which D is the Bhattacharyya metric distance between two distributions. In the Bhattacharyya 

metric distance, small distances between two distributions show small weight values and vice versa, 
consequently it’s better to apply the following equation in D to achieve a good result: 

 

 
2

                
1

exp 2    3  
22π

D
P

  
       

 
 
In the above mentioned equation, we observe that small distances correspond to big weight values, 

while big distances (not correspondence) generated small weight values. That is specified by a Gaussian with 
variance  and we can improve the result with tuning . Further in this equation D is the Bhattacharyya 
metric. 
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4. RESULTS  
In this section we will discuss details of the dataset and also show experimental results. The test bed 

and evaluation metrics are introduced in Section 4.1 and Section 4.2, respectively. The experimental results 
with compared to other annotation models are presented in Section 4.3 

 
4.1. Testbed 

We have used a set of Corel images consists of 5000 images to evaluate the proposed model. The 
image database consists of 50 main topics and each class includes 100 images. COREL-5K was first 
collected by Duygulu et al. [21] and it has been extensively used by other researchers, so it has been known 
as a de facto standard dataset in image annotation researches. Each image is also associated with 1-5 
keywords. Therefore, there are 374 keywords in the dataset. 

We partition the whole data set into a training set and a test set, 4500 training images and 500 test 
images. For the region features, we use the JSEG algorithm [34] to segment each image into 1--11 regions. 
Image regions with area less than 1/25 of the whole image are discarded. In average there are five image 
regions per image. Each image region is represented by a 36-D feature vector. For the dense grid, we sample 
13×13 pixels image patches without overlapping. The average number of image patches per image is around 
550. The image regions are clustered into 500 image blobs, similarly the Gabor descriptor of image patches 
are clustered into 500 centered. We experiment on different number of visual topics (V), textual context (T) 
and regional contexts (R) and achieve the best number of them that are shown in results. 

 
4.2. Evaluation Metrics 

For each method, we take the top five words as the final annotation. We use precision, recall and 1F  
metrics, to evaluate the quality of our approach. Precision and recall are calculated on the basis of each 
keyword in the vocabulary. Then the values are averaged over the keywords in the vocabulary. 

Precision is defined as the number of images correctly predicted with a given keyword called r, 
divided by the total number of images predicted with the keyword called n. Recall is defined as the number 
of images correctly predicted with a given keyword, divided by the total number of images having this 
keyword in its ground-truth called N. 
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We also use keyword number with recall>0 to show the diversity of correct words that can be 

predicted by the automatic image annotation model. The measure is important because a model can achieve 
high precision and recall values by only performing well on a small number of common words. 

 
4.3. Comparativeanalysis 

In this section, we present a comparative analysis among some research work focusing on different 
parts of the proposed model. We design two types of experiments, evaluate the effect of applying regional 
contexts in image annotation and then analyze combining this information with visual topics based on 
MCDM in annotation process. Finally we present an overall comparison with previous annotation models. 

 
4.3.1. Comparison on effect of regional contexts 

In the first experiment we evaluate the effect of regional context, discussed in section 3.1. The 
results of experiments are shown in table 1. Comparing the results in a table, the improvement of ECMRM 
[25] which incorporates the regional, global and contextual features to original CMRM [22] is obvious and 
improved   value from 0.1115 to 0.3270. But in the proposed approach using the regional contexts improved   
value from 0.3270 to 0.4214. In addition precision, recall and keyword number with recall>0 measure have 
been significantly improved. In summery using the regional contexts (neglect the textual context), 
significantly improve the performance, because the regions or objects in an image are exactly the explanation 
of image content. Also each of these regions acts as one word, so the relationship between the regions is 
more accurate than textual contexts to create annotation keywords. Textual contexts have some noises, 
because the keywords of training images are created manually and by human, consequently they have 
inconsistence. 

 
4.3.2. Comparison on combining regional contexts and visual topics 

In this experiment we investigate the performance of our model consists of integrating regional 
contexts and visual topics based on MCDM, discussed in section 3.2 and 3.3. The results of experiments are 
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shown in table 1 too. The effect of regional contexts to improve the performance is shown in the previous 
experiment. It is obvious that incorporating this information with visual topics help us to achieve the best 
performance, because these two kinds of information focus on different aspects of an image, extract different 
words and they are complementary to each other. This improvement is shown in table 1 and increase the 1F  

value from 0.4214 to 0.4938. Fig. 4 shows some sample words and their precision and recall values and Fig. 
5 shows 1F  value of sample words in CMRM, ECMRM and the proposed approach. The difference between 

the 1F  value of our method and ECMRM of sample words in Fig. 5 shows the noises in the manual 

annotation and textual contexts of ECMRM method. We can observe that considering the relationship 
between regions is helpful to obtain the annotation keywords related to image content and increase the 1F  

value. 
 

4.3.3. Overallcomparison 
In the both experiments mentioned above, performance evaluation of the proposed model has been 

illustrated from viewpoint of using regional contexts and viewpoint of integrating regional contexts and 
visual topics based on MCDM to image annotation. In this section the performance of our model (combining 
regional contexts and visual topics based on MCDM) is compared with other related works. The overall 
comparison (the average precision and recall) in some statistical models is illustrated in Fig. 6 and the 
number of keyword number with recall>0 in that statistical models is shown in Fig. 7, that the predominance 
of our model compared to other models is obvious. Some test images with the annotations generated by the 
CMRM, ECMRM and the proposed approach are demonstrated in Fig. 8. It is observed that the proposed 
approach can yield better annotations, which describe image semantics, than ECMRM. 

 
 

Table 1. The average precision, recall and f1 values of experiments 
The proposed approach using 

combination of regional contexts 
and visual topics 

The proposed approach 
using regional contexts 

ECMRM [25] 
CMRM 

[22] 
Models 

0.5186 0.4408 0.3050 0.1288 Precision 
0.4712 0.4038 0.3524 0.0983 Recall 
0.4938 0.4214 0.3270 0.1115 F1 

144 133 129 66 Keywords with recall>0 

 
 

 
 

Figure 4. Some sample words and their precision and recall values in the proposed approach 
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Figure 5. Some sample words and their F1 value in  CMRM, ECMRM and the proposed approach 
 
 

 
 

Figure 6. The average precision and recall in some statistical models 
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Figure 7. Kewords with recall>0 in some statistical models 
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Figure 8. Some sample images and the annotations by CMRM, ECMRM, and the proposed approach. 
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5. CONCLUSION  
In this paper, we have proposed a method for AIA which is improved the result of ECMRM method. 

Instead of using the direct distribution of regions in ECMRM, we utilize the distribution of topics between 
regions. Moreover regional contexts are more accurate than textual contexts or the relationship between 
keywords in ECMRM. The proposed approach combines the regional contexts and visual topics for 
automatic image annotation, as for the dependence between these two kinds of information in the image, we 
use the MCDM approach based on TOPSIS method to integrate them. To obtain global distribution of topics, 
visual topics are learned from the training images by a PLSA approach. Furthermore, PLSA has used to 
model the regional contexts or the topics between regions. The proposed method is tested on a 5000 Corel 
data set and the results show that utilization of regional contexts or considering the relationship between 
regions improves the performance significantly and its incorporation with the visual topics leads to the best 
performance. 
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