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 Distributed data processing is a major field in nowadays applications. Many 
applications collect and process data from distributed nodes to gain overall 
results. Large amount of data transfer and network delay made data 
processing in a centralized manner a hard operation representing an 
important problem. A very common way to solve this problem is ranking 
queries. Ranking or top-k queries concentrate only on the highest ranked 
tuples according to user’s interest. Another issue in most nowadays 
applications is data uncertainty. Many techniques were introduced for 
modeling, managing, and processing uncertain databases. Although these 
techniques were efficient, they didn’t deal with distributed data uncertainty. 
This paper deals with both data uncertainty and distribution based on ranking 
queries. A novel framework is proposed for ranking distributed uncertain 
data. The framework has a suite of novel algorithms for ranking data and 
monitoring updates. These algorithms help in reducing the communication 
rounds used and amount of data transmitted while achieving efficient and 
effective ranking. Experimental results show that the proposed framework 
has a great impact in reducing communication cost compared to other 
techniques.

Keyword: 

Database applications 
Distributed  databases 
Ranking 
Top-k query 
 

Copyright © 2014 Institute of Advanced Engineering and Science. 
All rights reserved. 

Corresponding Author: 

Yousry M. Abdul Azeem,  
Computers Engineering and Systems Department, Faculty of Engineering, Mansoura University 
Daqahlia 35516, Egypt 
Email: yousry@mans.edu.eg 

 
 
1. INTRODUCTION 

Distributed data processing is a major field in nowadays applications. Most of the common 
applications collect and process data from distributed sites to gain an overall result. Examples of such 
applications are; Content Distribution Network (CDN) [1, 2], sensor networks [3, 4, 5, 6], multimedia 
database [7], information retrieval from geographically separated data centers [8, 9, 10], network 
monitoring over distributed logs [11] and data extracted from a set of data streams [12, 13]. Centralized 
processing of sites’ data is a very expensive task. Moreover, large amount of data transfer and network 
delay makes it hard to manipulate these applications in a centralized manner [1]. Usually, in most of these 
applications, the user does not need to process all data in the system. Instead, only a fraction of data is 
returned to the user according to his interest. This is often done by using ranking queries. Ranking or top-k 
queries return only the highest ranked k tuples according to a user-defined scoring function. Many 
techniques were designed to rank distributed data introducing many efficient algorithms [3, 7, 8, 9, 11, 12]. 
However, none of these techniques has dealt with distributed uncertain data. Even though, in most of the 
nowadays applications, data is fuzzy or uncertain [14, 15, 16, 17, 18, 19, 20, 21]. 

Top-k queries in uncertain database system aim at finding the highest ranked k tuples over all 
possible in- stances of the database. These instances are called possible worlds. Processing this query will 
consume both time and communication bandwidth. Many recent approaches have dealt with ranking 
centralized uncertain database [22, 23, 24, 25]. However, there are only two approaches that have dealt with 
ranking in distributed uncertain systems [15, 26]. These were the first approaches to address ranking in 
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uncertain distributed environment, but they had some drawbacks. In the first approach the main concern 
was the transmission bandwidth trading-off latency. The central server communicates with other nodes 
several times per one tuple each access, for computing top-k list. This large number of accesses increases 
the latency.  The second approach was applied mainly on wireless sensor networks that are divided into 
clusters.  Each cluster head sends pre-pruned set of tuples (sufficient set) to the query node. Each sufficient 
set needs a lot of computation which is done at each cluster head. Moreover, both approaches don’t monitor 
updates in tuple values or ranks. This paper proposes a new framework that will help in overcoming these 
drawbacks. The framework utilizes only one or two rounds of communication in the proposed algorithms. 
So, the amount of transmitted data is minimized for achieving efficient distributed uncertain database 
ranking. 

The rest of this paper is organized as follows. Section 2 presents the proposed framework and 
defines the used data model. Section 3 discusses the details of the proposed algorithms.  Section 4 validates 
the proposed algorithms and evaluates their efficiency and performance by a comprehensive experimental 
study. Finally, the paper is concluded in Section 7. 
 
 
2. THE PROPOSED FRAMEWORK 

The crucial problems facing the current approaches of distributed uncertain database ranking are 
considered as follows: (i) The number of tuples each site chooses to send as a local answer to the query. 
Large number of tuples consumes both network bandwidth and time; also some tuples may not be involved 
in the ranking process. On the other hand, small number of tuples may cause inconsistent ranking results. (ii) 
The number of communication rounds (phases) applied in ranking process will affect also the consumed 
network bandwidth. So, it is required to minimize the number of communication phases. (iii) Moreover, The 
need for monitoring process is also an important issue. Only effective updates in values and probabilities of 
tuples at different sites should be reported to query node to update the current query answer. 

The proposed framework aims to solve the previously discussed problems. The main features of 
this frame- work are: (i) Fixing the number of communication rounds (only one round). (ii) Minimizing the 
number of candidate tuples. Candidate tuples are the set of tuples each node will send to query node for 
ranking process. (iii) Monitoring tuple updates is a main phase after computing the top-k list. The framework 
consists of three main layers, Query, Ranking, and M onitoring layers. In these layers a suite of novel 
algorithms are introduced and applied. 

The Query layer is a starting point for the framework in which the distributed top-k query is 
formulated then broadcasted to all nodes. This query may be accompanied with a threshold value. Process 
execution in this layer takes place at the side of the Query node. 

In the Ranking layer each site, on receiving the query, starts computing the needed tuples for query 
answer. If the query has a threshold value then a pruning phase is conducted first, otherwise continue with 
the ranking process. The main phase in this layer is the answer computation phase which is managed entirely 
using the newly proposed algorithm Threshold-tuned Distributed Top-k (TDTk). After computing the needed 
tuples for query answer, each site sends its local answer to the Query node to compute the distributed top-k 
list (DTk). The kth tuple in DTk is broadcasted to all the nodes to start the monitoring phase. Process 
execution in this layer is done at both sides of the Query node and other nodes simultaneously. 

In the Monitoring layer, each node assigns its lower bound tuple with the received one. This tuple is 
the corner stone in the monitoring process. The tuples are ranked at each site considering lower bound tuple 
in the ranking process. Tuples ranked lower than lower bound tuple are assigned as candidate list. Any 
change in candidate list values or any new values updated with a rank lower than lower bound tuple is 
considered a candidate to be in top-k. This tuple is sent to query node to update the current DTk. Monitoring 
phase is a continuous process executed on nodes with tuples’ updates and Query node. 
 
2.1. Data Model Definition 

Consider an uncertain database D, horizontally distributed over a set of nodes M with size |M| = m 
such that ܦ ൌ ⋃ ௜ܦ

௠
௜ୀଵ . A central server R works as the Query node. The database consists of N tuples 

fragmented with different sizes such that for any site Mi, |Di| = Ni and ܰ ൌ ∑ ௜ܰ
௠
௜ୀଵ . Tuples in Di are denoted 

as ௜ܶ ൌ ⋃ ௜௝ݐ
ே೔
௝ୀଵ  and their score values as random variables ௜ܺ ൌ ⋃ ௜ܺ௝

ே೔
௝ୀଵ a random variable Xij’s pdf is 

represented with the pairs (vjx, pjx) where 1  x  Bi and Bi is the bounded size of Xij. The main objective of 
this work is to report at R the answer of a Distributed top-k query. Formally, Definition 1 Distributed top-k 
query (DTk): It is the query that returns the top-k list of tuples with the highest rank among all distributed 
nodes. Let D be an uncertain database distributed over M nodes such that ܦ ൌ ⋃ ௜ܦ

௠
௜ୀଵ , let f be the ranking 

function. DTk query returns the min k tuples such that: 
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݇ܶܦ ൌ min
௜ୀଵ…௞

൭ራሼݐ ∈

ெ

௫ୀଵ

݅∀௫หܦ ൏ ݆, ௜ݐ ≺௙  ௝ൟ൱ (1)ݐ

 

Where ti ≺f tj means that ti dominates tj according to ranking function f. If the ranking function used is 

Expected rank then the DTk-query returns the top-k list with the lowest expected rank among all distributed 

nodes M. 
 
 
3. THE PROPOSED ALGORITHMS 

In this section, we discuss the proposed suite of algorithms which are implemented in our 
framework. The two proposed algorithms are employed in the Ranking layer. Each one of the ranking 
algorithms is implemented to rank distributed database at attribute-level uncertainty. The first algorithm was 
introduced in a prior work [27]. 

 
3.1. Threshold-tuned Distributed Top-k algorithm (TDTk) 

In this algorithm, a user-defined threshold value is used to prune tuples at each node. The rest 
tuples are ordered according to their expected rank then the top-k list, from each node, is sent to the query 
node. The query node ranks the tuples to get DTk then broadcast the kth tuple in DTk to all nodes. This value 
is used to modify local lower bounds used for monitoring phase. Formally, a DTk query in TDTk algorithm 
Qk returns the highest ranked k tuples such that: 

 

݇ܶܦ ൌራሼݐ௜ ∈ ௜ሻݐሺݎ|ܣ ൏ ሺݐ௜ାଵሻሽ

௞

௜ୀଵ

 (2) 

 
Where:ܣ ൌ ⋃ ௫ܣ

௠
௫ୀଵ , Ax is the set of highest score k-tuples from site x or : ܣ௫ ൌ ⋃ ൛ݐ௝ ∈ ௝൯ݐ൫ݎ|௫ܦ ൏

௞
௝ୀଵ

൫ݐ௝ାଵ൯ൟ and r(ti) as in equation 2 with pij   (the threshold value). The detailed steps of TDTk algorithm are 
as follows: The Query node R broadcasts a top-k query Qk with pruning threshold value , to all nodes. It 
initializes the priority queue DTk and tuple LT with empty values. Each node Mi  M empties a local priority 
queue Ai and initializes lower bound LBTi with empty value. Tuples’ values with probabilities less than  are 
omitted. The tuples are then ranked according to their expected ranks and inserted into Ai. The first k tuples in 
Ai are sent to R and inserted in DTk. LBTi is set with the kth tuple in Ai. After computing DTk, R broadcasts 
the last tuple LT to all other nodes. Each node, sets LBTi with the received LT and starts monitoring phase. 

 
3.2. Ceiling-tuned Distributed Top-k Algorithm (CDTk) 

In this algorithm, each node maintains a priority queue with local top-k list ranked by expected rank. 

The first ቒ
௞

௠
ቓ tuples from each node is sent to query node. The rest tuples are called candidate list used later to 

refine DTk. The query node ranks the tuples to get first phase DTk. The kth ranked tuple in DTk is sent to all 
nodes of the first (k - 1)-tuples in DTk. Each node ranks the tuples in candidate list considering the received 
tuple from Query node, then sends all tuples ranked lower than that tuple. Afterwards, Query node ranks the 
tuple for the second time to get the actual DTk. Again, the last tuple in DTk is used, but to specify local lower 
bound in order to start monitoring phase. 

A DTk query in CDTk algorithm is formulated based on equation 3. It returns the highest ranked k 
tuples with the lowest expected rank among all sites, in two successive phases. Formally, 
 

݇ܶܦ ൌራሼݐ௜ ∈ ,ܣ ௜ሻݐሺݎ ൏ ሺݐ௜ାଵሻሽ

௞

௜ୀଵ

 (3) 

 

where A is the set of tuples with the lowest expected rank from all nodes, , Ax is the set of 

tuples with lowest expected rank from node x such that:  in the 1st 

phase and Ax =  in the 2nd phase, where ܥ ൌ ቒ
௞

௠
ቓ, r(ti) is expected rank of ti as in 

equation 4 and LT is the kth ranked tuple in the first phase. 
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The detailed steps of CDTk algorithm are as follows: The Query node R computes the number of tuples 
needed from each site C. Afterwards it broadcasts a top-k query (specifying C) to all sites. It initializes the 
priority queue DTk and tuple LT with empty values. Each node Mi 2 M initializes the priority queue Ai and 
tuple LBTi with empty values. It ranks its own tuples according to their expected rank and sends the first C 
tuples to R while keeping the rest tuples in Ai (candidate list) for further DTk refining. At R, tuples are ranked 
by expected rank then the kth ranked tuple is sent to all the sites of the first (k-1)-tuples in DTk. Each node 
assigns LBTi with LT then ranks Ai with LBTi. Tuples ranked lower than LBTi are sent to R. Another ranking 
phase is done to get the refined DTk. The new value of LT is computed and broadcasted to all the nodes. Each 
node sets LBTi with LT value and starts monitoring phase. 
 
 
4. EXPERIMENTAL STUDY 

A data generator is developed in order to generate synthetic datasets used in algorithms verifying. It 
generates synthetic Gaussian dataset where each record’s score attribute draws its values from a Gaussian 
distribution. For each record, the standard deviation  is randomly selected from [1,1000] and the mean  is 
randomly selected from [5,100000]. Each record has g choices for its score values where g is randomly 
selected from 1 to 5. The generator controls both score values and probabilities of the generated tuples. 
 
4.1. Effect of Different Sizes Top-k Lists k 

Figure 1 shows the communication costs of the both proposed algorithms for different values of m 
(10, 50, 100, 200, 500 and 1000 nodes). Each figure compares between the both algorithms representing 
TDTk with zero threshold value ( = 0). It is observed from figure 1 that the communication cost of TDTk 
increases linearly with k until k = N/m (number of tuples at each site). After that value the communication 
cost is fixed for any greater k. Each site in this case will send all its tuples so the communication cost will be 
the same. The communication cost of CDTk also increases linearly with k but with a lower rate so that it 
appears, compared to TDTk, as if it has a fixed value. Figure 1 also shows that, the communication cost of A-
BF is fixed for any value of k. 
 
4.2. Effect of Different Number of Tuples N 

The effect of different N (total number of tuples in the database) on the communication cost is 
studied here for a fixed number of sites on which tuples are distributed. Figure 2a shows the communication 
cost of the two proposed algorithms with m = 10 and k = 10; k = 100 and different values of N. The observed 
communication cost of TDTk increases linearly with N until N = 1000 then it gets stable (same value with 
more N), while the communication cost of CDTk increases linearly with N. 

The reason of this behavior in TDTk is that each site sends k tuples to be processed. At lower values 
of N (when number of tuples at each site is less than k) each site sends all its tuples, so that the 
communication cost increases until N = m x k. Increasing N more than m x k will not affect number of tuples 
sent which is k. On the other hand CDTk shows a linear increase with the increase of N although the number 
of tuples sent is always the same (k/m). Figure 2b shows the communication cost of the two proposed 
algorithms but with m = 100 and k = 10; k = 100. TDTk has the same behavior as with m = 10, while CDTk 
shows a very low communication cost compared to TDTk. The distribution of the same number of tuples 
among larger number of sites increases the probability of getting top-k quickly or at least having a higher 
lower bound in the beginning of the second phase of the algorithm. Figure 2a and 2b show also a comparison 
between TDTk, CDTk and A-BF to observe the effect of different N on each algorithm. As seen from both 
figures the communication cost of A-BF increases linearly with a very high rate. 
 
4.3. Effect of Different Number of Distributed Sites m 

The effect of m on the communication cost is studied here for a fixed number of tuples distributed 
on different sites. Figure 2c shows the communication cost of the two proposed algorithms with N = 100000 
and k = 10; k = 100 and different values of m. The observed communication cost of TDTk increases linearly 
with the increase of m, while the communication cost of CDTk decreases also linearly with the increase of m. 
The matching point of the two algorithms is at m = 150 or m = 75. At these values, the communication costs 
of both algorithms are nearly equal. After these values, TDTk tends to increase while CDTk decreases. Figure 
2c shows that, the communication cost of A-BF increases linearly but with higher values than both TDTk and 
CDTk. 
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Figure 1. Communication costs of the proposed algorithms and A-BF with different values of m and N 
 
 

 
 

Figure 2. Communication costs with different values of N and different values of m 
 

 
5. CONCLUSION 

In this paper a novel framework is proposed for ranking distributed uncertain database. The 
framework consists of three main layers (Query; Ranking and Monitoring), each one has its own algorithms. 
The main contribution of this paper is at both Ranking and Monitoring layers. Two novel algorithms for 
ranking distributed uncertain database are proposed at Ranking layer. Expected rank is the ranking function 
used in both algorithms. The first algorithm (TDTk) utilizes only one communication round with m x k tuples 
sent to query site. The second one (CDTk) utilizes two communication rounds with only (k + m) tuples, at 
most, in the first round. An experimental study is made to test the efficiency and effectiveness of the 
proposed algorithms against A-BF algorithm [26]. From observing the experiments results, it is clear that 
TDTk overcomes CDTk in some situations while CDTk overcomes TDTk in other situations, and both of 
them overcome the old one. 
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