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 This paper proposed a new nonlinear discrete-time robust-neural observer 
(DTRNO) which capable to give estimation for the states of Discrete-Time 
Uncertain Non-affine Non-linear Systems in presence of external 
disturbances. The Neural network is a kind of discrete-time Multi Layered 
Perceptron (MLP) which Trained with an Extended Kalman-Filter (EKF) 
based algorithm, which this neural observer is robust in presence of external 
and internal uncertainties, using a parallel configuration.This work includes 
the stability proof of the estimation error on the basis of the Lyapunov 
approach, and for demonstrate observer performance an Uncertain Non-
affine Nonlinear Systems have been simulated to formulations validate the 
theoretical. Simulation results confirm the proficiency of the DTRNO even at 
the different operating conditions and presence of parameters uncertainties. 
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1. INTRODUCTION  

During the recent decades, state estimation of dynamic systems and the state observation problem 
has been an active topic of research in different areas such as automatic control applications, fault detection, 
monitoring, modeling [7], etc. Due to cost, and technological constraints usually assume complete 
accessibility for the system state, which is not always possible [6].  It is noted that most practical systems are 
nonlinear and it is difficult to design a performance controller or observer. So far, the linearization techniques 
can be applied to overcome these problems. However, this linearization can limit enormously the 
performances of such approaches of control and observation. In this case, the use of neural networks (NNs) 
permits to approximate suitably the nonlinear functions and then to bypass the linearization problem [1], [2]. 

 The state observation problem has been widely developed in the literature, and used in numerous 
applications. However in most cases, the state variables are rarely available for direct online measurements. 
Furthermore, there is a substantial requirement for reliable reconstruction of the state variables, especially 
when they are required in the synthesis of control and observation laws or for process monitoring purposes 
[4], [26], [16]. However, in most realistic cases merely input and output of the system are measurable. 
Therefore, estimating the state variables by observers plays a crucial role in the control of processes to 
achieve better performances [20], [13]. Observers design process is too complex have a good performance 
even in presence of model and disturbance uncertainties are called robust [5], [7], [11], [27]. Newly, other 
kind of observers has emerged: neural observers, for unknown plant dynamics [9], [15], [17], [18], [22] but 
all the approaches mentioned above need the previous knowledge of the plant model, at least partially. 

There exist different training algorithms for neural networks, which, however, normally encounter 
some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, 
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among others [10]. As a viable alternative, new training algorithm, e.g., those based on Kalman filtering have 
been proposed [14], [21], [23], [24], [25]. Due to the fact that training a neural networks  typically results in a 
nonlinear problem, an extended Kalman filter (EKF) is required to be used [3], [14]. EKF training for NNs 
allows the reduction of the epoch size and the number of required neurons [14]. Considering these two facts, 
we propose the use of the EKF training for DTNO in order to model complex Discrete Time Uncertain 
Nonlinear Systems (DTUNS).Parameter estimation , and state estimation are related in the sense of how the 
measurement from sensors can be used to obtain an accurate mode of the plant to be controlled. So, the 
learning algorithm for the DTUNS is implemented using an EKF. The respective stability analysis, based on 
the Lyapunov approach, is included for the proposed scheme. The applicability of this scheme is illustrated 
by discrete-time state estimation for a nonlinear systems. 

 
 

2. DISCRETE TIME NONLINEAR SYSTEM  
In this section, important mathematical preliminaries required in future sections are presented and 

then the state of a discrete-time nonlinear system, which is assumed to be observable, is provided. 
 

2.1. Mathematical Preliminaries 
Through this brief, we use k as the sampling step,  0k , as the absolute value and, as the 

Euclidian norm for vectors and as any adequate norm for matrices which close follows [8]. Consider a 
multiple input–multiple output (MIMO) nonlinear system; 

 
 (k))u  , (k)(x  F  1) (k x   (1) 

 
 (k)x h  (k)y   (2) 

 

Where nx  , mu  and nmnF   is non-linear function. 
Definition 1: System (1) is said to be forced, or to have inputs. In contrast, a system described by an equation 
without explicit presence of an input u, that is; 
 

 (k)x  F  1) (k x   (3) 

 
is said to be unforced. It can be obtained after selecting the input u as a feedback function of the state 
 

 (k)x    u(k)   (4) 

 
Such substitution eliminates u and yields an unforced system [19]; 

Definition 2: The solution of (1)–(3) is semi globally uniformly ultimately bounded (SGUUB), if for any , 

which is a compact subset of n  and all )( 0kx , there exists an 0 , and a number  ))(k x ,( N 0 such 

that )(kx  for all Nkk  0 , [29].In other words, the solution of (1) is said to be SGUUB if, for any a 

priory given (arbitrarily large) bounded set  and any a priory given (arbitrarily small) set 0 , which 

contains )0,0( as an interior point, there exists a control (3) such that every trajectory of the closed-loop 

system starting from enters the set } <(k)x  | (k){x  = 0  , in a finite time and remains in it thereafter, as is 

displayed in Figure 1. 
 
 

 
 
 
 
 
 
 

Figure 1. SGUUB, schematic representation 
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Theorem 1: Let  (k)x V  be a Lyapunov function for a discrete-time system (1), which satisfies the 

following properties: 
 
     )k(x)k(xV)k(x 21   

        )()k(x)k(xV)k(xV)1k(xV 33 
 

(6) 

 
Where ζ is a positive constant, 1 and 2 are strictly increasing functions, and 3 is a continuous 

non-decreasing function. Thus if 
 

0)(  xV     For   )(kx
 

(7) 

 
Then )(kx  is uniformly ultimately bounded, i.e., there is a time instant Tk  such that Tkkkx  ,)(   [8]. 

Definition 3: A subset nS  is bounded if there exists 0r such that rx  for all  S x   [19]. 

 
2.2. Discrete-Time Nonlinear System 

To estimate the state of a discrete-time nonlinear system, which is assumed to be observable, given 
by; 

 
d(k) (k))u  , (k)(x  F  1) (k x   

 (k)x h  (k)y   (8) 

 

where nx  is the state vector of the system, mku )( is the input vector, pky )(  is the output vector, 
npC   is a known output matrix, nkd )( is a disturbance vector, G and F are smooth vectors field, iG  

and iF theirs entries. Hence, (8) can be rewritten as; 

 

   
 

(k)Cx   (k)y 

n , . . . 1,  i  , (k) d  (k)u  , (k)x  F  1) (k  x

(k) d . . . (k) d . . . (k) d  (k) d ,(k)  x. . . (k)  x. . . (k) x   (k)x 

iii

T
ni1

T
ni1






 

(9) 

 
 
3. NEURAL STATE ESTIMATION 

A Multi Layer Perceptron (MLP) is a feed-forward artificial neural network model that maps sets of 
input data onto a set of appropriate outputs. A MLP consists of multiple layers of nodes in a directed graph, 
with each layer fully connected to the next one. Except for the input nodes, each node is a neuron with a 
nonlinear activation function. MLP is a modification of the standard linear perceptron and can distinguish 
data that are not linearly separable. The structure of neural network used the proposed observer MPL neural 
network with four inputs, five Neurons in the hidden layer and an output is shown in Figure 2 

. 
 

 
 

Figure 2. The structure of the neural network 
 
 

1Iinput

2Iinput

3Iinput

4Iinput

LayerIinput
LayerHidden

LayerOutput



                ISSN: 2088-8708 

IJECE Vol. 4, No. 4, August 2014 :  603 – 613 

606

By adding and subtracting Phrase  kAx of equation (8) 

 
   

(k)Cx   (k)y 

 u(k)x(k), g  kAx  1) (k x




 
(10) 

 
A is Optional Horowitz matrix, C)(A, are observable, and   u(k)x(k), g includes uncertain terms 

and disturbance system, where,  
 
  Ax(k)-d(k) (k))u  , (k)(x  F u(k)x(k), g   (11) 

 
The key to designing a neuro-observer is to employ a neural network to identify the nonlinearity and 

a conventional observer to estimate the states. By invoking a Luenberger observer [28], the observer model 
of the system (10) can be defined as follows; 

 
    (k))xC-(y(k) u(k)(k),x g  kxA  1) (k x

   

(k) xC  (k) y
                                                              (12) 

 

Where x


denotes the state of the observer, and the observer gain mn is selected such that
C)-(A  becomes a Hurwitz matrix. It should be noted that the gain   is guaranteed to exist; since A can be 

selected such that A)(C, is observable. The structure of a neuro-observer is shown in Figure 3. 

 
 

 
 

Figure 3. The structure of the proposed neural network observer 
 
 

To approximate the nonlinear function   u(k)x(k), g a multilayer NN is considered. So, a multilayer 

NN with sufficiently large number of hidden layer neurons can estimate the unknown function   u(k)x(k), g  

as follows: 
 

   xVWg TT
 (13) 

 
Where Wand V are the weight matrices of the output and hidden layers, respectively, u][x  = x ,   is 

the bounded neural network approximation error, and   is the transfer function of the hidden neurons that is 
usually considered as a tangent hyperbolic function presenting below: 

 

  1
exp1

2
xV

2i 


  xVi

 
(14) 

 
To obtain a linear in-parameter neural network fixing the weights is required, so the first layer as V 

= I. Then, the model can be expressed as 
 

   xWg T
 (15) 

 










c

c

1Z )(),( kukxF

networkneural

A

)(kx

)(ˆ kx

ĝ

)(ky)(ku

)(kd

)(ˆ ky

1Z
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The proposed observer is then given by; 
 

     u(k)(k),x̂tanhWu(k)(k),x̂ĝ *T
 (16) 

 
On the other hand, by defining the state estimation error (k)x̂-x(k)(k)x~   and using (12), and (16), 

the error dynamics can be expressed as; 
 

   u(k)(k),x̂tanhŴu(k)(k),x̂ĝ T  (17) 

, 
 

   
(k)xC-(y(k)

u(k)(k),x̂tanhŴ  kAx  1) (k x

(k)x....(k)x...(k)x(k),x(k),x  )(k x
T

ni321












 

(18) 

 
Once the structure of the neural network is known, a proper learning rule should be defined to train 

the network. This weight-updating mechanism is usually defined in such a way that the stability of the 
observer is guaranteed. Therefore, the weight estimation error is defined as; 

 
*
iii W)k(w)k(W

~
  (19) 

 
And 
 

)k(x̂)k(x)k(x~ iii   (20) 

 

Since *
iW  is constant 

 
 Z0k),k(W)1k(W)k(W

~
)1k(W

~
iiii   (21) 

 
3.1. Extended Kalman Filter 

Kalman filter, which is the set of mathematical equations, is considered as one of the important 
discoveries in the control theory principles. E. Kalman’s article was published in the year 1960. Its most 
immediate applications were in control of complex dynamic systems, such as manufacturing processes, 
aircrafts, ships or spaceships (it was part of the Apollo onboard guidance system). It was and still is 
frequently used not only in automation, but also in the graphical and economical applications, etc. However, 
the Extended Kalman Filter started to appear in the neural network training applications only relatively 
recently, which was caused by the progress of computer systems development. When the model is nonlinear, 
which is the case of neural networks, we have to extend Kalman filter using linearization procedure. 
Resulting filter is then called extended Kalman filter (EKF) [12].The weight vectors are updated online with 
a decoupled EKF, described by; 

 
)k(e)k(K)k(W)1k(W iiii 

 
n,...,1i),k(M)k(H)k(P)k(K iiii 

 )k(Q)k(P)k(H)k(K)k(P)1k(P ii
T
iiii   (22) 

 
With 
 

1
ii

T
iii )]k(H)k(P)k(H)k(R[)k(M   (23) 

 
where )k(Wi  is a vector of all weights, i is a function returning a vector of actual outputs, K  is the 

so called Kalman gain matrix, P is the error covariance matrix of the state and H is the measurement matrix 
(Jacobian). iH is the partial derivative of the MLP output with respect to the MLP network parameters at the 

kth iteration of the Kalman recursion. 
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4. PROOF OF STABILITY: LYAPUNOV’S DIRECT METHOD 

Theorem2: For uncertain Discrete Time nonlinear dynamic system (8) the Neural-Robust Observer 
given by equation (12) where    u(k)(k),x̂tanhŴu(k)(k),x̂ĝ T  and TŴ trained with the EKF-based 

algorithm, ensures that the estimation error and the output error are uniformly ultima-tely bounded, moreover 
network weights remain bounded. The output error 

 
)k(ŷ)k(y)k(e   (24) 

 
and the estimation error described by; )k(x̂)k(x)k(x~ iii  then the dynamics of )1k(xi  can be 

expressed as 
 

)k(x̂)k(x)k(x~ iii 111   (25) 

 
Therefore 
 

 
      



(k))xC-(y(k)(k)x̂tanhŴkx̂A(k)x̂tanh W

 kAx)1k(x~)1k(x̂)1k(x)1k(x~

TT*

iiii
  

     (k)x~C(k)x~tanhW
~

  kx~A)1k(x~ T
i  (26) 

 
These dynamics can be considered as a linear system, where A state matrix, I input matrix and 

   )k(x̂C(k)x̂tanhW
~

g~ i
T  is input. If input a stable linear system is bounded, then output will be bounded, 

therefore if g~ Remain bounded then the estimation error is bounded. g~, and   are expressed as follows: 

 







































)k(

.

)k(

,

)k(ĝ

.

)k(ĝ

)k(ĝ

nn



11

 

(27) 

 
Where 
 

  nikxC(k)xWWg ii
T

i
*T

ii ,...2,1,)(ˆˆtanh)ˆ(~    (28) 

 
*W is constant Matrix but unknown; 

 
ZkkWkWkW iii  ),(ˆ)()(

~
 (29) 

 
According to the EKF algorithm  
 

),()()(ˆ)1(ˆ kekKkWkW iiii   (30) 

 
 ,)k(ŷ)k(y)k(e   (31) 

)k(e)k(K)k(W
~

)1k(W
~

iiii   (32) 

 
It is evident that if g~was bounded then ĝ and error will be bounded. In order to proof, consider the 

candidate Lyapunov function; 
 

(k)g~(k)(k)Pg~(k)W
~

(k)PW
~

(k)V i
T

ii
T
ii   (33) 

 
Whose first increment is defined as 
 

(k)V-1)(kV(k)V iii   

(k)g~(k)(k)Pg~(k)W
~

(k)PW
~

- 1)(kg~1)(k1)P(kg~1)(kW
~

1)(kPW
~

(k)V i
T

ii
T
ii

T
ii

T
ii   (34)

        

                                                               

 
Using (23) and (20) in (43), then 
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   
    (k)g~(k)(k)Pg~(k)W

~
(k)PW

~
(k)x~C-(k))((k)x~C-(k)

(k)e(k)K-(k)W
~

)((k)e(k)K-(k)W
~

(k)V

i
T

ii
T
iii

iiiiiii





k

k

i
T

i

T


 

(35) 

 
With 

 

iiii Qk-(k)Pk  )()(   (36) 

 
  ii (k)xtanh (k)W(k)  ˆ~  (37) 

 

ii
T
iii QkPkHkKk  )()()()(

 

(38) 

 
Hence, (44) can be expressed as 
 

(k)g~(k)(k)Pg~-(k)W
~

(k)P(k)W
~

-(k)x~)((k)x~2)()()(2

(k)x~(k)CK)()(x~ 2(k)W
~

)((k)W
~

2-(k)W
~

(k)(k)PW
~

2(k)V

i
T

i
T

i

i
T2

iiii
T
ii

CkCkkk

kKCkk

ii
T
i

T
i

T

i
TT

i



 

 

(39)

          

       

 
Using the inequalities 
 

,YX2YYXX TTT   (40) 
 

,YX2YYXX TTT   (41) 
 

0,,,,)()(   TnnnTTT PPPYXXXPPXXXXP   (42) 

 
Then (48) can be rewritten as 
 

     

       

  )(2)(4)(.(k)W
~

)((k)x~(k)V

)((k)x~)((k)x~2 )((k)x~tanh(k)W
~

4

)(4 )(CK(k)x~2(k))(P-(k))(P(k)W
~

(k)V

22

i

2

i

22222

i

22

ii

2

ii

2

ii

kkkk

kPkCgk

kk

iiiii

iiii

iii













 

(43) 

 
Where; 
 

  

     
   

 















)(..~tanh.)max()(

,)(~tanh4)(

,)()(2)(2)(

*

2

22

kxWWk

k(k)x(k))(P-(k))(Pk

kPkCgkCKk

iiiii

iiii

iiiiiii







 

(44) 

 
As a result, 0(k)Vi  when 

 

 
1

i

imax
2

zi k
)k(E

)k(A4
(k)x~ 




 

(45) 

 
Or 
 

 
2

i

imax
2

zi
i k

)k(F

)k(A4
(k)W

~





 

(46) 

 
Therefore, the solution of (12) and (32) is stable; hence the estimation error and the DTRNO 

weights are DTUNNS.Considering (9) and (24), it is easy to see that the output error has an algebraic relation 
with )k(x , for that reason, )k(x̂ is bounded, )k(e is bounded too. Figure 4 illustrates the range 1k , and 2k . 
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Figure 4. the range 1k  and 2k  
 

 
5. SIMULATION RESULTS 

The performance of the proposed observer is demonstrated through simulation results. The example 
is a Non-affine Nonlinear System. The simulation is performed in MATLAB software. In this section has 
been NN Observer by EKF learning algorithm for a second-order plant; 
 

  
 

)()()()(

)()()(11/)()(2)(1.0)1(

)()()(1/)()(2)(1.0)1(

21

2
2
2

2
1

2
22

1
2

2211

kNkxkxky

kdkxkxkukukxkx

kdkxkukxkukxkx






 

(47) 

 
Where )(1 kx and )(2 kx are state variables, u is input system, )(1 kd and )(2 kd are disturbance and  

)(kN  is measurement noise.The numerical values of the Non-affine Non-linear System parameters and 

observer are described in Table 1. 
 
 

Table 1. The Numerical Values 
Parameter Values Parameter Values Parameter Values 
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




0010

0001  

A 



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
















20000

12000

00200

00120

001.0
  

T

0.10.20.25.0

50.05.05.00.3
001.0 











  

T 0.001 

 
 

The state and error estimation obtained by our proposed neural network by EKF learning algorithm 
for discrete-time Non-affine Nonlinear system are shown in Figure 5.  

 
 

 
 

Figure 5. The state and error responses to sin (k) reference  
 
 
The state and error estimation obtained by our proposed neural network by EKF learning algorithm 

for discrete-time Non-affine Nonlinear system with input; )100sin(02.0)50sin(01.0)sin()( kkkku  , the 

results are given in Figure 6. 
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Figure 6. The state and error responses to )100sin(02.0)50sin(01.0)sin()( kkkku  reference 

 
 

The state estimation and error estimation obtained by proposed neural network by EKF learning 
algorithm for system (56) with input )sin()( kku   and In the presence of measurement noise is shown in 

Figure 7. 
 
 

 
 

Figure 7. The state and error responses to )sin()( kku  reference 

 
 
The state estimation and error estimation obtained by proposed neural network by EKF learning 

algorithm for system (47) with input )100sin(02.0)50sin(01.0)sin()( kkkku   and In the presence of 

measurement noise is shown in Figure 8. 
 
 

 
Figure 8. The state and error responses to )100sin(02.0)50sin(01.0)sin()( kkkku  reference 

 
 

The state estimation and error estimation obtained by proposed neural network by EKF learning 
algorithm for system (47) with input )sin()( kku   and In the presence of disturbance are shown in Figure 9. 

 
 

 
 

Figure 9. The state and error responses to )sin()( kku   reference  
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These results demonstrate that the NN estimation error learned by EKF algorithm is very low. The 
stability of the overall system was shown by Lyapunov’s direct method. It is worth noting that no SPR 
assumption or any other constraints that restrict the applicability of the approach was imposed on the system. 
The proposed observer can be applied both as an online and an off-line estimator. Simulation results 
performed on Non-affine Nonlinear System confirm the reliable performance of the proposed observer. 
 
 
6. CONCLUSION 

A MLPNN structure was used to design a neural observer, named DTRNO, for a class of Discrete 
Time Uncertain Non-affine Nonlinear Systems (DTUNNS); the proposed observer was trained with an EKF 
based algorithm, which was implemented online in a parallel configuration. The boundedness of the output, 
state, and estimation errors was established on the basis of the Lyapunov approach. Discrete-time results 
show the effectiveness of the proposed observer, as applied to a Non-affine Nonlinear System in presence of 
time varying disturbances. However, output trajectory tracking results were included in this brief in order to 
show the effectiveness of the proposed observer as compared with other nonlinear observer. 
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