
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 4, No. 6, December 2014, pp. 848~857
ISSN: 2088-8708  848

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

A New Procedure to Detect Low Interaction Honeypots

Eleazar Aguirre-Anaya1, Gina Gallegos-Garcia2, Nicolás Solano Luna3,
Luis Alfonso Villa Vargas4

1, 4Center for Research in Computing
2, 3Department of Research and Graduate Studies, Electrical and Mechanical Engineering School

Instituto Politécnico Nacional, Mexico City, Mexico

Article Info ABSTRACT

Article history:

Received Sep 21, 2014
Revised Nov 14, 2014
Accepted Nov 22, 2014

 Honeypots systems are an important piece of the network security
infrastructure and can be deployed to accomplish different purposes such as:
network sensing, capturing and learning about 0-day exploits, capturing and
analyzing of black hat techniques, deterring black hats and data gathering for
doing statistical analysis over the Internet traffic, among others.
Nevertheless, all honeypots need to look like real systems, due to if a
honeypot is unmasked, it loses its value. This paper presents a new procedure
to detect low interaction honeypots, through HTTP request, regardless
honeypot architecture. It is important to mention that Low Interaction
Honeypots network services need to be improved in order to get trustworthy
information. Otherwise, it should consider data obtained by low interaction
honeypots like inaccurate and unreliable information.

Keyword:

Fingerprint
Honeypot Systems
Low interaction
Remote Network Systems
Signatures Copyright © 2014 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Gina Gallegos-Garcia,
Department of Research and Graduate Studies,
Electrical and Mechanical Engineering School – Instituto Politécnico Nacional.
Av. Sta Ana 1000. Sn. Fco. Culhuacan. Coyoacán. 04430. Mexico City, Mexico.
Email: ggallegosg@ipn.mx

1. INTRODUCTION

Nowadays, honeypots systems are important components in the organization’s whole security
infrastructure. They can be used to help sense and mitigate security events.

In [1], the author gives the de facto definition: 'A honeypot is a security resource whose value lies
on being probed, attacked and compromised'. However, if a honeypot is detected, it loses all its value. In
other words, if honeypots were susceptible to be detected, the Black hat Community could post a list of
known honeypots systems letting others black hats avoid those systems and focus on real systems.

Honeypot systems are used to research over malware propagation and new intrusion techniques used
by black hats. They can give the possibility to detect and analyze 0-day exploits or to obtain information
related to malware such as: propagation methods or even their source code. Moreover, a honeypot could act
like an alarm system because any received connection, from a host inside organizational network, is an
unequivocal indication that information security mechanisms have been evaded or there is an insider attacker.
This information could be used to design contention methods against malware, to improve network security
mechanism, to define new security policies or change some of them. Additionally to that, the managers could
take better IT decisions to search about security infrastructure or to deploy new IT services for clients and
partners of each organization. However, it is an important task to keep honeypot systems unidentified in
order to collect information from the network and reach its goals.

Nowadays, honeypot's remote detection is not an easy task because the detection of uncommon
environments depends on the black hat’s skills. In example, detecting a decrease in the speed of the returning
packets over the network, a limited amount of commands in the service or the operating system, limited

  ISSN: 2088-8708

IJECE Vol. 4, No. 6, December 2014 : 848 – 857

849

amount of libraries and restricted access to memory or file system areas. Doing this detection implies the
interaction between the black hat and honeypot system for a while.

Honeypot systems are able to efficiently emulate a TCP/IP stack and they also can simulate being
another Operating System over the network. Besides, honeypot systems are usually deployed behind a NAT
capable device and only the services offered by honeypot system can be reached from outside networks.
Some techniques for fingerprinting a TCP/IP stacks have been proposed, but they were evaded easily without
doing a lot of changes in honeypot code.

Spitzner said that in order to avoid fingerprinting, realism must be developed, blend it with the
environment and modify honeypot behavior [1]. However, in case of low interaction honeypots, increasing
the realism means to program better network service emulators with more features, and as a consequence, to
increase the interaction offered by them.

The reminder of the paper is organized as follows: In Section 2 the background is divided into
honeypots and fingerprinting. In Section 3 we detail different schemes used for deploying low interaction
honeypots and the different approaches of fingerprinting a remote network system. In Section 4 we detail our
proposed solution. Section 5 shows obtained results after testing different Low Interaction Honeypots.
Considering our results, Section 6 describes a discussion. In Section 7, Conclusions and Future Work are
given. Finally we list References.

2. BACKGROUND

2.1. Honeypots

Honeypots can be classified by their function in: research or produce honeypots and also in low and
high interaction honeypots, by commands, libraries and applications they offer. A Honeynet is a special
network composes by many systems and a honeypot gateway.

Production honeypots are deployed in organizations with the purpose of giving a set of systems to
the black hats, where they can waste their time and computational resources (processor time, memory,
network time and bandwidth, among others.), by maintaining the production systems in safe. Usually, for
production honeypots, information is fabricated and put it inside the system, in order to confuse the black
hats. Examples of such data fabrication are: the creation of fake user’s accounts, documents and directories,
access to the system, connections to other systems and system logs. We should pay attention to the time of
data fabrication and create consistent data; otherwise, a black hat could identify fabricated data, for example,
a directory inside the user home with wrong permissions and created information without a previous access
of the user, among others. The main functions of this kind of honeypots are to defend the organization by
causing deception to black hats. The production honeypots usually are installed over a hardware and software
similar to the production servers in organizations. They can be installed over virtual environments too.

Research honeypots are mainly found at the universities and their purpose is to learn more about
black hats techniques by offering many systems in a wide variety of configurations. Due to many universities
cannot afford new and dedicated computers, honeypots are usually installed on virtual environments or in old
hardware computers. Commonly, research honeypots are part of a big deployed Honeynet in different
campus and universities.

High interaction honeypots are out of the scope of this paper because they are installed over a real
operating system and the services they offer are not emulators. However, it is important to say that high
interaction honeypots are deployed over virtual environments and the gathering of information is done over
the virtual layer, so, the operating system does not need any modification [2]. On the other hand, low
interaction honeypots offer a wide variety of systems and services emulators to black hats, malicious users or
malicious software, known as malware. The main advantages of deploying low interaction honeypots are the
wide area they can cover, the low risk they represent and the vast variety of services they can emulate. In
addition to that, low interaction honeypots could be fingerprinted because they use emulators and have less
functionality than real systems with real network services and the interaction they offer is limited.

In [3], authors show some features that only low interaction honeypots have. Most of them can be
emulated, in example, by sending pseudorandom traffic to honeypots in order to increase reality or by
emulating a few systems to avoid over-heading software. The other features are optional, extensive logging
can be covered with the use of a Gateway Honeynet and bandwidth restriction is desirable but also optional
and is specified by each organization. Only one feature is inherent of low interaction honeypot and it cannot
be changed, they do not implement a full-featured network services set.

IJECE ISSN: 2088-8708 

A New Procedure to Detect Low Interaction Honeypots (Gina Gallegos-Garcia)

850

2.2. Fingerprinting
As biometric fingerprint, where a specific pattern is extracted and compared against a database, the

identification of systems is possible due to the different implementations of communication protocols,
network services or specific environments. These different features are collected and then a fingerprint is
generated, which include enough features to unequivocally identify a specific system of a set of different
systems. Some features that are used to identify systems are specific responses to malformed queries,
mistakes in the implementations like misspelled words in error messages, typical behavior like special
characters for paths or a specific set of addresses, initial counters or identification numbers, error messages in
different anomalous queries, time response or an amount of resources, such as: amount of connections and
child processes. In order to the fingerprinting tool loses accuracy, such features can be changed, but some of
them are very difficult to change and need a high level programming.

As a general rule, a honeypot should not be detected. But if it is identified, it loses all its value. For
production honeypots, the black hats could change their target system and attack a production system. As a
consequence, they would be able to obtain valuable information. Moreover, in the case of research
honeypots, the possibility to learn about black hat community becomes impossible. To prevent and hinder
this possibility, the good practices indicate changes to the default settings. However, the architecture of low
interaction honeypots makes this task more difficult. In other words, it is not customizable.

There are two ways to avoid fingerprinting: scrubbing and camouflaging. The first one is the
modification of the output in a communication, where the fingerprinting tool cannot determine the identity of
the target system. The second one refers to the modification of different expected outputs of other
implementations of the protocol, which gives as a result an exact wrong match in the fingerprinting tool.
Nevertheless, if the fingerprint sequence is large, the camouflage could be almost as expensive as the
redeployment of a different protocol implementation. Definitions of on-line and off-line defenses against the
fingerprinting and their features can be found in [4].

In addition, in [4] authors propose minimum set of tests for Nmap, in order to fingerprint an OS
without the use of malformed packets, as a consequence a low probability of being a Network Intrusion
Detection System (NIDS) is obtained. Due the application fingerprinting uses complete handshake
connections, the probability of sensing it or blocking it is low.

3. RELATED WORK

3.1. Schemes for Deploying Low Interaction Honeypots

In this section, four schemes for deploying low interaction honeypots sensors are described, the first
one is the simplest scheme to configure and maintain them and the fourth one is the most complex scheme.
They are described as follows and showed in Figure 1.

The first scheme is the installation and configuration of a low interaction honeypot. Then it is
necessary to assign a public IP and connect it to the Internet. This scheme is commonly used to sense and
analyzepropagation methods of worms and Internet traffic statistics.

The second scheme includes also the installation and configuration of a packet filtering firewall. Its
main function is to redirect specific network traffic to the honeypot. In order to redirect such traffic, the
packet filtering firewall analyses network traffic and checks it against a rule set. If features match with a rule,
the firewall redirects such packets to the honeypot. Typical rules are: filtering source and destination IP,
destination port and flags in the TCP packet header.

The third scheme is similar to the second one with the difference that it includes a network traffic
normalizer in the packet filtering firewall, commonly called scrubber. Examples of scrubbers are: the BSD's
IP-filter with the enabled option scrub and the use of IP personality or a similar module for IP-Tables in
GNU/Linux. Moreover, in order to restrict ingoing and outgoing network traffic, this scheme can also include
a honeypot Gateway such as a Honey-wall.

  ISSN: 2088-8708

IJECE Vol. 4, No. 6, December 2014 : 848 – 857

851

Figure 1. The Four Schemes for Deploying Low Interaction Honeypot.

After a known attack has been identified, the fourth scheme is designed to redirect network traffic. This
scheme includes an IPS that senses and redirects network traffic to the honey-net. Such redirection is usually
enabled for a previously specified time. This scheme can use a honey-net Gateway too and should be the
preferred scheme for production of honeypots.

3.2. Fingerprinting a Remote Network System

There are two methods to remotely identify a system in a network, the passive and the active. The
first one uses a network sniffer and then analyses all network traffic passing by the NIC. After that and
considering a database, it tries to identify the system. This kind of remote identification will not be
considered in this paper, because we do not consider passive identification due to there is no exist an
interaction between honeypot and black hat, before such black hat take control of a honeypot. The second
one sends specific request over the network and then analyses the responses. After that, it determinates the
identity of remote system by comparing it against a fingerprint database. Different approaches to
fingerprinting a remote system are explained in the following subsections.

3.2.1. Interactive Fingerprinting

This approach uses a well-known request and as a consequence it is very easy to detect and evade.
Actually low interaction honeypots have the same fingerprint and it gives the exact response to the
fingerprinting tool. These tools have a module to identify network services and are based on offered banners
by remote services.

This approach is useless for all schemes even Honeyd due to itself is able to fool the fingerprinting
tool by representing the personality of a honeypot according to the Nmap or Xprobe2 fingerprinting files and
by responding the expected values for such tools [2]. In [3], an analysis of time technique to detect low
interaction honeypots with good results in local area was proposed, which required sending a lot of packets
and was very dependent of network topology.

3.2.2. Statistical Fingerprinting

This approach sends many requests and then applies a statistical analysis over received replies in
order to identify the remote system. This approach is very sensitive to changes in network topology and only
can be successful in the first scheme in the TCP/IP stack. In the second scheme could be when it is used in
network services fingerprinting. In [3], 49 quantitative and qualitative features to fingerprinting TCP/IP stack
were proposed. In such proposal the analysis of time is done over the response of ICMP messages. They also
demonstrated honeypot systems respond slower than real systems.

3.2.3. The Fuzzy Approach

The use of fuzzy logic, as in other scenarios [5] [6] gives different advantages.In a honeypots
detection processgives the advantage to identify the kind of honeypot is being used. In other words, from a
set of possibilities, it is assigned a membership grade, identifying in this way, the major of them. All of this is
made in order to get such advantage. Based on the TCP/IP stack, the fingerprinting procedure can be evaded
in all schemes, but it is a useful identification mechanism. The main problem of this approach is the

IJECE ISSN: 2088-8708 

A New Procedure to Detect Low Interaction Honeypots (Gina Gallegos-Garcia)

852

definition of the membership functions for the fuzzy system, which depends on the amount of features to be
evaluated. The Xprobe2 tool employs this approachwith the use of ICMP tests. In [7], a detailed description
of Xprobe2 and its composition are given.

Figure 2. Proposed procedure for generation of low-interaction honeypot fingerprint.

3.2.4. The Network Service Approach
This approach focuses on fingerprinting network services. It covers a small amount of computers

because it can only be used against systems that are offering the service. Even this approach seems to be the
most limited, it is the best option to fingerprint low interaction honeypots. The reason to use this approach
over the other ones is that network services in a honeypot are emulators and they are limited to only respond
a small amount of requests. This approach usually employs fuzzy logic in a hierarchy way. An HTTP
fingerprinting is preceded by a TCP/IP fingerprinting prove even though Nmap has become less effective
now [4]. In [3] authors show results with different features in real services, moreover Honeyd services were
given. However, it did not explain how the services are test.

There exist modules to fingerprinting HTTP Server available to Nmap and Xprobe2. This last one
has also a module to test HTTP in spite of it is only used to help the identification of the Operating System.
In addition to that, there exist many implementations of Honeyd that use different scripts to impersonate as
HTTP services. There are other Honeyd scripts services, such as: FTP and Telnet. However, nowadays they
have been replaced for newer protocols such a SSH.

  ISSN: 2088-8708

IJECE Vol. 4, No. 6, December 2014 : 848 – 857

853

4. SOLUTION PROPOSED

4.1. The Procedure

The procedure we use is divided into six stages as can be seen in Figure 2. The first step determines
the simulation scenario for generating fingerprints. The second one defines instances that we used in the
identification process. The third stage carries out a process between the system evaluation and Honeypot.
Once this process is completed, we analyzed obtained results. After that, if such results allow identifying the
Honeypot with a percentage of acceptable effectiveness; we proceed to generate the Honeypot fingerprint.
Otherwise, we adjust the instances or/and the evaluation process. This stage is repeated until an acceptable
percentage of identification is obtained.

Figure 3. Our testing scenario considers four main elements

Table 1. Specifications of systems used
System Processor RAM Hard Disk Software

Honeypot 2 x 2.24GHz 2 GB 80 GB Honeyd
Protection Pentium 4 2.4GHz 1 GB 1x80GB OpenBSD 3.8

Honeynet Gateway Pentium 4 2.4GHz 1 GB 1x40GB HoneyWall roo-1.4
Referee Intel Core 2 Duo 1.5GHz 4 GB 100GB BackTrack 4.2

4.2 Definition of Our Simulation Scenario
The Low Interaction Honeypot systems have a limited range of messages that can respond, as well

as the amount of services that emulate.
One of the Low Interaction Honeypots has the greatest number of HTTP services emulators and

message is ¨Honeyd¨. Considering that and with the intention to use a simulation scenario as close as the
production, we proposed to use a topology consisting of: one Packet Firewall also called Honeywall and one
HoneyPot. The Honeywall is a system that captures all requests made in the evaluation process and the Low
Interaction Honepot.

Figure 3 shows mentioned scenario and Table 1 summarizes their characteristics. In such Table it is
important to mention that we did use a Honeyd for installing Low Interaction Honeypot, moreover we did
install Web.sh as network emulators, Apache script 1.3.23, IIS Microsoft emulator IIS/5.0 and y Honeyweb
0.4 that emulates versions of HTTP implementation.

Honeypot System
In the Honeypot we installed the GNU/Linux Debian Operating System, version 6.0 and kernel

version 2.6.32 with minimal installation of the system. We updated obsolete programs, and then we
downloaded programs for this profile (Honeyd 1.5c version, Honeyweb-0.4, additional scripts for SUSE and
Apache Web Server version 2.2.18). Finally we created virtual systems that have an associated IP address
and emulators script of HTTP.

Protection System
In the protector we installed the OpenBSD Operating System version 4.8, we configured the IPfilter

and the scrub function was enabled.
Honeynet Gateway System
In this system we installed and set up the default HoneyWall root-20090425114542-1.4.hw. We

defined two network cards in bridge mode and a third one for administration. We also defined network
services offered by the administration interface. Walleye GUI was enabled.

IJECE ISSN: 2088-8708 

A New Procedure to Detect Low Interaction Honeypots (Gina Gallegos-Garcia)

854

Table 2. Comparison of status codes between Honeyd emulators and Apache server.
Status Code Httpd Total Codes Web. Sh Apache.Sh Lis.Sh Honey Web 0.4

Successful (2xx) 8 1 1 1 1
Redirection (3xx) 7 0 0 1 0
Client Error (4xx) 22 1 1 1 5
Server Error (5xx) 9 0 0 0 2

Tester System
In our tester, Backtrack System Version 4.2 was installed and the signatures of the HTTPrint

Version 0.301 were updated.For all computer equipment we made a minimum installation of the system and
also for configuration of Sebek source code (data capture tool, which captures the activities of attackers on a
Honeypot).

4.3 Definition of Instances

During the definition of instances stage we made an evaluation through service exercising
techniques to identify emulators of network service of Low Interaction Honeypot System.This kind of
evaluation involves a remote tester system that unknowns the architecture and the remote system to be
evaluated, which is known as black box evaluation. Therefore the selection of instances contemplates the
state codes to the answers given by HoneyPot.

The status codes of HTTP protocol are established in [8] and [9] and they are divided into the
following families:
 Informative 1xx indicates a provisional response and is only sent to clients in terms of experimentation.
 Success 2xx indicates that the client request was received, understood and accepted.
 Redirection 3xx refers to further action and is required by the user agent to complete the request.
 4xx is related to client error that happens when request issued by the client has error.
 Server Error 5xx occurs where the server is unable to perform the request.

As part of definition of instances we compared the states codes found in the source code of different
emulators of HTTP to Honeyd against those one found in the implementation of Apache Web Server 2.2.18,
the result of such comparison is shown in Table 2.

Figure 4. The identification process that is made by the HTTPrint is fooled by Honeyd

4.4 Evaluation of Low Interaction Honeypots
As we mentioned before, our simulation scenario depicted in Figure 3, has a remote computer that is

responsible for the evaluation and the interaction with architecture of Low-Interaction Honeypot. In addition
to that we propose requests injection of type HTTP, which are made by tester system. Such requests are made
with the aim that Honeypot answers them according to the characteristics of each emulator has.

In the tester system we activate the Whireshark tool to capture the network traffic that is exchanged
between the tester system and the Honeyd architecture. In addition to that we did run HTTPrint tool with the
intention of observing what remote system was identified during evaluation.As is possible to see in Figure 4,
fingerprinting identification process that is made by the HTTPrint, is fooled by Honeyd because identifying
emulators like they were HTTP servers. After that, we did proceed to analyze information of stored flows and
requests made by the tester system.

  ISSN: 2088-8708

IJECE Vol. 4, No. 6, December 2014 : 848 – 857

855

5. RESULTS
The first parameter we consider in our analysis is the number of status codes implemented in

Honeyd HTTP scripts. As we did mention before they are defined [8-10] and as a result of pcap files
analysis, we observe that HTTPrint tool makes 23 requests to define the kind of remote system to be
identified.

The analysis of the number of status codes implemented in Honeyd HTTP scripts and in a real
HTTP server shows us a significant difference between them. Table 2 summarizes the number of status codes
offered by Apache httpd 2.2.18 (HTTPD), by the Honeyd scripts web.sh (WEB), by apache.sh (APACHE),
by iis.sh (IIS) from Honeyd scripts for SUSE and Windows and finally HoneyWeb 0.4 (HWEB). As is shown
in Figure 5, after execution of HTTPrint against Honeyd scripts, the new signatures were obtained. Such
signatures were written in the signatures.txt file with the name of correspondent emulator. Then we repeat
previous tests and for all of them we did get a 100% of identification.

Figure 5. Successful detection of Honeyd HTTP scripts after re-running HTTPrint tool.

Figure 6. New obtained signatures of Honeyd HTTP scripts.

Moreover, even if HoneyWeb is able to emulate 4 versions of IIS, 8 versions of Apache and 3
versions of Netscape Enterprise, a single signature allows detecting all versions. After that, the new
signatures were added to previous ones and re-run HTTPrint with all Honeyd scripts successfully detected. It
is presented in Figure 6. In addition, due to the fingerprinting service is made over a valid connection and the
huge amount of possible queries, this method is more difficult to be identified by an IDS. As a consequence,
it is only important to make a modification in the query, such as: do the request GET / HTTP/1.1, increase

IJECE ISSN: 2088-8708 

A New Procedure to Detect Low Interaction Honeypots (Gina Gallegos-Garcia)

856

the field of the version or subversion or change a single character in the GET /antidisestablishmentarianism
HTTP/1.0 query. In Table 3 the replies to HTTPrint are presented.

6. DISCUSSION
From obtained results we can state the following important points:
 The HTTP emulators for Honeyd answer very differently to HTTPrint requests.
 Web.sh emulators, apache.sh and honeyweb.sh do not send any answer to requests Htprint.
 The apache.sh emulators, iis.sh and honeyweb send status codes of success when they should send client

error codes.
 The web.sh and web.sh emulators send status codes of error when they should send status codes of server

error.
 The difference between HTTP emulators for Honeyd and a real HTTP server is very strong due to these

latter implements, in a more complex way, status codes in the protocol standard and not just a portion.
 Being the same HTTP emulators for Honeyd, the same answer for HTTPrint requests is presented,

regardless of the distribution of the Operating System or their respective architecture.

Table 3. Results of the analysis of stored flow.
HTTPRINT QUERY HTTPD WEB APACHE IIS HWEB

garbage 501 - - 400 -
GET / HTTP/1.0 200 404 200 200 200

GET / HTTP/1.0 (*) 200 404 200 200 200
OPTIONS * HTTP/1.0 200 404 501 400 200
OPTIONS / HTTP/1.0 200 404 501 400 200

GET /antidisestablishmentarianism HTTP/1.0 404 404 400 302 200
PUT / HTTP/1.0 405 404 501 400 -

JUNKMETHOD / HTTP/1.0 501 404 501 400 -
GET JUNK /1.0 200 404 501 400 -

get / http/1.0 501 404 501 400 -
POST / HTTP/1.0 200 404 501 400 200

GET /cgi-bin/ HTTP/1.0 403 404 400 302 200
GET/scripts/ HTTP/1.0 404 404 400 302 200

GET / HTTP/0.8 200 404 501 400 200
GET / HTTP/0.9 200 404 501 400 -

GET / HTTP/1.1 Connection: close 200 404 200 200 200
GET / HTTP/1.2 Connection: close 200 404 501 400 200

GET / HTTP/1.1 (**) 400 404 200 200 200
GET / HTTP/1.2 (**) 400 404 501 400 200

GET / HTTP/3.0 200 404 501 400 200
GET /. asmx HTTP/1.0 404 404 400 302 -
GET /../../ HTTP/1.0 400 404 400 302 200

7. CONCLUSIONS AND FUTURE WORK

The fingerprinting of TCP/IP stack is useless against common low interaction honeypots due to the
amount of characteristics and limited responses of specific request. Nevertheless, low interaction honeypots
are susceptible to fingerprint of network services. It is because of the differences between a real service and
emulator scripts.

Fingerprinting of network services is successful because of the amount of available options in the
construction of queries, making the fingerprinting tools hard to be detected. Moreover, the attack could be
made in a long period of time, reducing in this way, a possible identification of the tool. In addition it is very
concerning that there are tools ready to detect low interaction honeypots such as: HTTPrintthat is a way to
generate new fingerprints and add them to signatures files. In addition to that, the use of fuzzy logic in
fingerprinting tools increases success rate of identification. Moreover, nowadays, as we have found, low
interaction honeypots need to be improved in order to ensure their correct functionality. Otherwise, they
should not be deployed as research honeypots. Unfortunately, recent activity in some low interaction
honeypots sensors projects is null.

As future work, a research on detecting high interaction honeypots will be done, in addition to the
creation of a fingerprinting tool of low interaction honeypots in order to be used in different network
services. Finally, it is important to mention that another challenge would be to design a fingerprinting tool
that is able to identity what kind of honeypot scheme is being used.

  ISSN: 2088-8708

IJECE Vol. 4, No. 6, December 2014 : 848 – 857

857

REFERENCES
[1] Spitzner L. The Honeynet Project: Trapping the Hackers. IEEE Security and Privacy, Vol 1, No. 2. 2003. Pp: 15-23.
[2] Provos N, Holz T. Virtual Honeypots: From Botnet Tracking to Intrusion Detection. 1st Edition, Addison Wesley

Professional.2007.Pp: 19-69.
[3] Mukkamala S, Yendrapalli K, Basnet R, Shankarapani M.K. Sung A. H.Detection of Virtual Environments and Low

Interaction Honeypots.In Proc. IEEE Workshop on Information Assurance and Security.2007. Pp: 92-98.
[4] Greenwald Lloyd G, Thomas Tavaris J. Toward Undetected Operating System Fingerprinting. In Proc. First

USENIX Worshop of Offensive Technologies.2006. Article No. 6.
[5] Godbole Vaibhav. Performance Analysis of Clustering Protocol Using Fuzzy Logic for Wireless Sensor Network.

International Journal of Artificial Intelligence.Vol. 1. No. 3. 2012. Pp: 103-111.
[6] Hamzah Mustafa I, Abdall Turki Y. Mobile Robot Navigation using Fuzzy logic and Wavelet Network. International

Journal of Robotics and Automation.Vol. 3. No. 3. 2014. Pp: 191-200.
[7] Yarochkin F.V, Arkin O, Kydyraliev M, Shih-Yao D. Xprobe2++: Low Volume Remote Network Information

Gathering. In Proc. IEEE/IFIP International Conference on Dependable Systems & Networks.2009.Pp: 205-210.
[8] Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L, Leach P, Berners-Lee T. Hypertext transfer Protocol --

HTTP/1.1. RFC 2616, 1999.Pp: 39-41.
[9] Khare R, Lawrence S, Upgrading to TLS Within HTTP/1.1. RFC 2817.2000. Pp: 8.
[10] Nielsen H, Leach P, Lawrence S. An HTTP Extension Framework. RFC 2774.2000. Pp: 8-13.

BIOGRAPHIES OF AUTHORS

Eleazar Aguirre-Anayaholds a Ph.D. degree on Communications and Electronics. He is
professor at the Center for Research in Computing the National Polytechnic Institute of Mexico.
He has been involved as information security specialist in consulting projects for public and
private organizations; Aguirre-Anaya also has published papers on research journals and
conferences and has served as thesis advisor for several graduate students on information
security topics. His main research topics are network security, honeynets and secure
infrastructures.

Gina Gallegos-Garciareceived a MS Degree and Ph. D from the National Polytechnic Institute
of Mexico in 2005 and 2011 respectively. She is currently Professor of Graduated Section of
Mechanical and Electrical Engineering School and belongs to the National System of
Researchers. During the summer of 2011 she performed a postdoctoral research at Yale
University in the United States of America. Her areas of interest include The Electronic Voting,
the Secure Cryptographic Application Design, Information Systems and Cryptography, Software
Engineering.

Nicolas Solano Luna received a ME Degree from the National Polytechnic Institute of Mexico
in 2012. He is currently working in the Federal Economical Competence Commission as a
computer forensics investigator. His areas of interest include network security, computer
forensics and mobile devices security.

Luis Alfonso Villa Vargasholds a Ph.D. degree on Informatics. He is the principal at the Center
for Research in Computing the National Polytechnic Institute of Mexico. He has been involved
as information security specialist in consulting projects for public and private organizations.Villa
Vargas also has published papers on research journals and conferences. He performed a
postdoctoral research at the Massachusetts Institute of Technology (MIT).

