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Venturini modulation algorithm, The advent of the field oriented with 
modern speed control technique has partially solved DSIM control problems 
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1. INTRODUCTION  

The use of six-phase induction motor for industrial drives presents several advantages over the 
conventional three-phase drive such as improved reliability, magnetic flux harmonic reduction, torque 
pulsations minimization, and reduction on the power ratings for the static converter. For these reasons, six-
phase induction motors are beginning to be a widely acceptable alternative in high power applications. 
During the last years, the modeling and control of double star induction machine has been the subject of 
investigations [1, 2], it is desirable to control the flux and torque separately in order to have the same 
performances as those of DC motors. One way of doing this is by using the field oriented control. This 
method assures the decoupling of flux and torque. The vector-controlled DSIM with a conventional PI speed 
controller is used extensively in industry, because has easily implemented. Alongside this success, the 
problem of tuning PI-controllers has remained an active research area. Furthermore, with changes in system 
dynamics and variations in operating points PI-Controllers should be returned on a regular basis. One of the 
most noticeable control theories is the method using the Adaptive Neural Network .Recently, the neural 
network (NN) is widely used as a universal approximator in the area of nonlinear mapping and uncertain 
nonlinear control problems [3], The NN structure is to be implemented by input output nonlinear mapping 
models and is constructed with input, output and hidden layers of activation functions. Because the NN can 
be used for a universal approximator like fuzzy and neural systems, it has been introduced as a possible 
solution to the real multivariate interpolation problem. 

The induction motor drive fed by a matrix converter is superior to the conventional PWM-VS 
inverter because of the lack of bulky DC-link capacitors with limited life time, the bi-directional power flow 
capability, the sinusoidal input/output currents, and adjustable input power factor. Furthermore, because of a 
high integration capability and a higher reliability of the semiconductor device structures, the matrix 
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converter topology is recommended for extreme temperatures and critical volume/weight applications. 
However, only a few of the practical matrix converters have been applied to induction motor drive system 
because the implementation of the switch devices in the matrix converter is difficult and modulation 
technique and commutation control are more complicated than the conventional PWM inverter [4, 5]. 

 
 

2. DOUBLE STAR INDUCTION MODELING 
Explaining research chronological, including research design, research procedure (in the form of 

algorithms, Pseudocode or other), how to test and data acquisition [1]-[3]. The description of the course of 
research should be supported references, so the explanation can be accepted scientifically [2], [4]. 

The machine stydied is represented by with two stators windings: 1,11 scsb,sa
 and 2,22 scsb,sa

 

which are displaced by 
030α   and the rotorical phases: rcrb,,ra , this is a most rugged and maintenance 

free machine 
 
 

 
 

Figure 1.  Double stator winding representation 
 
 
The following assumptions have been made in deriving the machine model  
- Machine windings are sinusoidally distributed 
- Machine magnetic saturation and the mutual leakage inductances are neglected 
- The two stars have same parameters 
The mathematical model of the machine is written as a set of state equations, both for the electrical and 
mechanical parts,  the voltage equation is[2]: 
   

       

       

       qdrrsdqrdqrrdqr

qdssdqdqssdqs

qdssdqdqssdqs

Φ).ω(ωΦ
dt

d
I.RV

Φ.ωΦ
dt

d
I.RV

Φ.ωΦ
dt

d
I.RV







22222

11111

 (1) 
  
with: 
 

 
 dqrdqsdqsmdqrsdqr

dqrdqsdqsmdqssdqs

IIILIL

IIILIL





2112

21121212

][][

][][

 (2) 
 

the electrical state variables in the “dq”system are the flux represented by vector [Φ], while the input variable 
in the “dq”system are expressed by vector [V]. 
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the equation of the electromagnetic torque is:  
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the equation of flux is: 
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the state matrix A and vector B in the d-q axis are: 
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3. MATRIX CONVERTER MODELING 
In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs, tables and others that make the reader 
understand easily [2], [5].  

A matrix converter is a variable amplitude and frequency power supply that converts the three phase 
line voltage directly. It is very simple in structure and has powerful controllability. The real development of 
the matrix converter starts with the work of Venturini and Alesina who proposed a mathematical analysis and 
introduced the low frequency modulation matrix concept to describe the low frequency behavior of the 
matrix converter [1]. In this, the output voltages are obtained by multiplication of the modulation matrix or 
transfer matrix with the input voltages. The basic diagram of a matrix converter can be represented by  
Figure 2. 

 

 
Figure 2.  Basic structure of matrix converter 

 
 

The existence function provides a mathematical expression for describing switching patterns. The 
existence function for a single switch assumes a value of unity when the switch is closed and zero when the 
switch is open. For the matrix converter shown in Figure2, the existence function for each of the switches is 
expressed by the following equations: 
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 (10) 
 

where k= {A, B, C} is input phase and j={a, b, c} is output phase. 
The above constraint can be expressed in the following form: 
 

1 CjBjAj SSS
 (11) 

 
with the above restrictions a 3 X 3 matrix converter has 27 possible switching states. 
the mathematical expression that represents the operation of a three phase ac to ac Matrix Converter can be 
expressed as follows: 
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where va, vb and vc and iA, iB and iC are the output voltages and input currents respectively. To determine 
the behavior of the MC at output frequencies well below the switching frequency, a modulation duty cycle 
can be defined for each switch. The modulation duty cycle MKj for the switch SKj in Figure.2 is defined as 
in equation (14) below. 
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where kjt  is the one time for the switch kjS  between input phase k={A, B, C} and j={a, b, c} and sT  is the 

period of the PWM switching signal or sampling period. In terms of the modulation duty sycle, equations 12, 
and 13 can be rewritten as given below.  
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1 CjBjAj MMM

 (16) 
j={a, b, c} 

 
the high-frequency synthesis technique introduced by Venturini and Alesina in [4-5] allows the use of low 
frequency continuous functions, referred to as the modulation matrix m(t), to calculate the existence 
functions for each switch of the matrix converter. Thus, the aim when using the Alesina and Venturini 
modulation method is to find a modulation matrix which satisfies the following set of equations. 
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where the input voltages (t)vi  are given by the following set of functions 
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and the desired output voltages (t)vo   are 
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output currents )(tio  can be expressed as: 

 































)
3

2
cos(

)
3

2
cos(

)cos(

)(

oo

ào

oo

oo

t

t

t

Iti







 (21) 
 
where o  is the phase angle of the linear load. 

finally, the desired input current has an arbitrary phase i . This angle can be set to 0 to obtain unity input 

power factor of the matrix converter. 
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The elements of matrix m(t) that satisfy equations 17 and 18 are given by 
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4. SPEED CONTROL OF THE DSIM WITH NEURAL NETWORK 

Feedforward artificial neural networks (ANN’s) are universal approximators of nonlinear functions 
[7]. As such, the ANN’s use a dense interconnection of neurons that correspond to computing nodes. Each 
node performs the multiplication of its input signals by constant weights, sums up the results, and mapys the 
sum to a nonlinear function (activation function); the result is then transferred to its output. The mathematical 
model of a neuron is given by 

 

).(  bxwy ii
 (24) 

 
where (x1, x2, ..., xN)  are inputs from the previous layer neurons, (w1, w2, ..., wN) are the corresponding 
weights, and b is the bias of the neuron. 
for a logarithmic sigmoidal activation function, the output is given by                                                                                            
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A feedforward neural network is organized in layers: an input layer, one or more hidden layers, and 

an output layer. No computation is performed in the input layer: the signals are directly supplied to the first 
hidden layer. Hidden and output neurons generally have a sigmoidal activation function. The knowledge in 
an ANN is acquired through a learning algorithm, which performs the adaptation of weights of the network 
iteratively until the error between the target vectors and output of the network falls below a certain error goal. 
The most popular learning algorithm for multilayer networks is the backpropagation algorithm, which 
consists of a forward and backward action. In the first, the signals are propagated through the network layer 
by layer. An output vector is thus generated and subtracted from the desired output vector. The resultant error 
vector is propagated backward in the network and serves to adjust the weights in order to minimize the output 
error. The backpropagation training algorithm and its variants are implemented by many general-purpose 
software packages such as the neural-network toolbox from MATLAB, The structure of NN controller 
selected in this paper is shown in Figure 2. The NN controller consists of three neurons in the input layer, 
seven neurons in the hidden layer and a neuron in the output layer. 

The three inputs signals e(k), e(k-1), isq1(k-1), and the torque (Tem*(k)) output are exported to the 
MATLAB Workspace (e(k) is the speed error and e(k-1)  previous speed error ). The following MATLAB 
code trains the Neural Network. The first section of code generates the ‘cell array’. The cell array combines 
the 3 different inputs into 1 input vector. The activation functions of the hidden and output neurons are 
Hyperbolic tangent sigmoid and linear, respectively. The learning of NN controller is done using the 
Levenberg-Marquardt back-propagation algorithm [7]. The training parameters for the Levenberg-Marquardt 
algorithm ( trainlm) are: 
Maximum number of epochs to train                                      (net.trainParam.epochs=400) 
Performance goal(net.trainParam.goal = 1e-5;)       Epochs between displays (net.trainParam.show = 5;) 
 
 

 
 

Figure 2.  Multilayer Feedforward Neural Network 
 
 
The off-line learning process of NN controller is shown in Figure 3. The data training is taken from the input 
and output values of the PI controller by simulating it under normal and disturbance conditions, (the fuzzy 
logic system is used on-line to generate the PI controller parameters), the learning rate were taken equal to 
0.2. The electromagnetic torque from PI controller and the electromagnetic torque from NN controller are 
compared to obtain desired error goal [8,9]. 
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Figure 3. Learning process of NN controller 
 
 

5. SIMULATION RESULTS 
The SIMULINK model for indirect FOC of the 4.5 Kw cage rotor DSIM associated with adaptive 

FLC-PI controller is shown in Figure 4. The machine is fed by a matrix converter. The parameters of the 
induction motor are summarized in Appendix.  

The first test concerns a no-load starting of the motor with a reference speed refω = 288 rad/sec. and 

a nominal load disturbance torque (14N.m) is suddenly applied between 1sec and 2sec, followed by a consign 
inversion (-288rad/sec) at 2.5sec. At 4.5s, a -14Nm load disturbance is applied during a period of 2 s. this test 
has for object the study of controller behaviors in pursuit and in regulation. 

The test results obtained are shown in figure 5. The speed of the motor reaches ωref at 0.2 s with 
almost no overshoot. It then begins to oscillate inside a 0.4% error strip around ωref, The neural network 
controller rejects the load disturbance very quickly with no overshoot and with a negligible steady state error.  

In order to test the robustness of the used method we have studied the effect of the parameters 
uncertainties on the performances of the speed control. To show the effect of the parameters uncertainties, we 
have simulated the system with different values of the parameter considered and compared to nominal value 
(real value). The Figure 6 and Figure 7 show respectively the behavior of the DSIM when Rr is 10% 
increased of its nominal value and J is increased and decreased 10% of its nominal value. An increase of the 
moment of inertia gives best performances, but it presents a slow dynamic response. The figures show that 
the proposed controller gave satisfactory performances thus judges that the controller is robust. 

 
 

 

 
 

Figure 5. Simulated results of neural network controller for DSIM 
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Figure 6.  Simulated results of neural network controller for DSIM with variation of the rotor resistance 

at t=2s 
 
 

 
Figure 7. Simulated results of neural network controller for DSIM with variation of the rotor inertia (+10%J) 

 

 
 

Figure 4.  Simulink diagram for DSIM control systems 
 
 

6. CONCLUSION  
In this paper a control strategy which incorporates the neural network for control of non linear 

system is described and used to demonstrate the effectiveness of the neural network for control of non linear 
system is described and used to demonstrate the effectiveness of the neural network for control the speed of 
dual star induction motor based on the indirect FOC. The machine is fed by a matrix converter. Simulation 
results show that the designed neural controller realizes a good dynamic behavior of the motor, with a rapid 
settling time, no overshoot, almost instantaneous rejection of load disturbance, a perfect speed tracking and it 
deals well with parameter variations of the motor. It seems to be a high- performance robust controller. 
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