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 An induction machine is a highly non-linear system that poses a great 
challenge because of its fault diagnosis due to the processing of large and 
complex data. The fault in an induction machine can lead to excessive 
downtimes that can lead to huge losses in terms of maintenance and 
production. This paper discusses the diagnosis of stator winding faults, which 
is one of the common faults in an induction machine. Several diagnostics 
techniques have been presented in the literature. Fault detection using 
traditional analytical methods are not always possible as this requires prior 
knowledge of the exact motor model. The motor models are also susceptible 
to inaccuracy due to parameter variations. This paper presents Adaptive 
Neuro-fuzzy Inference system (ANFIS) based fault diagnosis of induction 
motors. The distinction between the stator winding fault and supply 
unbalance is addressed in this paper. Experimental data is collected by 
shorting the turns of a health motor as well as creating unbalance in the stator 
voltage. The data is processed and fed to an ANFIS classifier that accurately 
identifies the faulted condition and unbalanced supply voltage conditions. 
The ANFIS provides almost 99% accurate and computationally efficient 
output in diagnosing the faults and unbalance conditions. 
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1. INTRODUCTION 

Condition monitoring and fault diagnosis of electrical machines is extremely important in any 
industrial set-up as fault in a single machine can have drastic consequences. Thus, extensive research efforts 
are being put forth to develop various methods of fault diagnosis as summarized in [1-5]. Broadly classified, 
faults can be of electrical or mechanical nature. A three-phase induction motor may experience several types 
of electrical fault conditions, such as over load, ground fault, line-to-line fault, unbalanced supply voltage, 
over voltage, under voltage, single phasing, and turn-to-turn fault [6, 7]. Single phasing situations occur when 
one of the three-phases of the motor is open. This situation increases the positive and negative sequence 
currents and excessive heating is hence produced. Unbalanced supply voltage results in negative sequence 
voltage. It also leads to an increase in positive and negative sequence current components. Similarly, turn-to-
turn short and coil open faults can cause line current unbalance. Ground and line faults are detected by 
observing the zero sequence components of the current. 

The inter-turn fault of stator windings usually starts as an undetected insulation failure between two 
adjacent turns. As a result, it slowly develops to a short circuit isolating a number of turns. In some cases, the 
fault occurs due to an electric arc connecting two points of the winding. From the past literature analysis, it is 
obvious that the presence of various faults is simply determined by the stator current analysis most 
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commonly referred as Motor Current Signature Analysis (MCSA) [1]. The stator currents and voltages are 
usually preferred for diagnostics purposes because the needed sensors are usually available in the existing 
drive system. In most of the cases, MCSA relies on the model based diagnostic techniques. The stator 
winding fault detection using a model-based approach is extensively discussed in the literature [8]. The major 
drawbacks of model-based techniques are the requirements of precise motor parameters and the need of 
speed signals in addition to the voltage and current. The induction motor model that is developed is 
independent of rotor speed in [9] and, thus, the diagnostic method is also independent of the torque variation.  

To overcome the dependence on the parameter of machines, a method to extract the component 
produced by the fault from the estimation error is presented in [10]. The negative sequence component of the 
estimation error is used in this paper. This component is computed by projecting the current estimation error 
in an inverse-sequence reference frame.  

A more precise stator winding fault diagnostic technique that is able to detect even a single turn 
fault is presented in [11]. The proposed technique can detect incipient fault and is highly sensitive. The fault 
signature used is the positive and negative third harmonic line current. The proposed technique is 
independent of structural asymmetry and supply imbalance. It is shown that both positive and negative third 
harmonic is generated from interaction of specific time and permeance harmonics. It is further shown that the 
order of time and permeance harmonics for the positive and negative sequence third harmonic components is 
different and hence both are included for the fault diagnosis. The least squares method is utilized for 
estimating inherent structural asymmetry and supply-imbalance-related third harmonic components. The final 
fault signatures (residues) used are the error in the estimated value and measured value of the third harmonic 
components. The major drawback of the proposed method is the need of a robust observer system to estimate 
the accurate value of the third harmonic components.  

The stator winding faults create unbalancing in the line current, and similar unbalancing is also 
created due to asymmetrical winding resistances, the circuit connection resistances [12, 13] and supply 
unbalance. The later is not classified as fault conditions. Some work has been done to identify and distinguish 
the unbalancing due to faults and the unbalancing due to the inherent asymmetry in the winding and supply 
[14]. However, the distinction between these two phenomena is highly challenging under no-load conditions. 
This issue is addressed in this paper.  
The traditional monitoring systems have a number of drawbacks such as inflexibility, high cost, and 
hardware limitations that are highly dependent on specialized instruments. Recently, the monitoring and fault 
detection of electrical machines have taken a new turn from traditional techniques to artificial intelligence 
[15-18]. 

Artificial intelligence techniques are considered significant in condition monitoring and fault 
diagnosis of electrical machines, reviewed in [19-20]. Neural network and fuzzy logic techniques have their 
own shortcomings as discussed in [21] and thus a specific combination of these two techniques, known as 
Adaptive Neuro-Fuzzy Inference System (ANFIS), have evolved as a better alternative solution [22]. The 
ANFIS technique offers the best training feature of neural network and heuristic interpretation of the process 
results similar to fuzzy logic theory, thus providing a powerful tool that can be employed in conjunction with 
the condition monitoring and fault diagnostic applications. The use of ANFIS is growing in popularity in this 
niche application area and a significant amount of literature is available [23]-[26]. Mechanical fault diagnosis 
using ANFIS is also discussed in [27-29] for induction motor drive systems. The technique presented in [27] 
utilizes stator current signature analysis using wavelet packet decomposition to diagnose the broken rotor bar 
and rotor eccentricity. Bearing fault and inter-turn insulation failure of main winding of a single-phase 
induction motor is considered in [26]. Stator current, rotor speed, motor winding temperature, bearing 
temperature and motor noise are considered as input to the ANFIS. However, additional noise sensors are not 
very reliable and the data collected from such sensors is not very precise. The bearing failure diagnostic used 
in [30] uses vibration data as one type of input to the ANFIS. Nevertheless, the vibration sensors are also 
prone to disturbances from the environmental condition. Furthermore, if the grounding of the machine is 
improper, then the sensor may not give reliable output. The eccentricity related issues also lead to similar 
vibration and, thus, the distinction between this fault and bearing failure may be difficult. 

This paper proposes the application of an ANFIS-based fault diagnostic scheme for stator turn-to-
turn fault. Since the stator winding faults creates unbalancing and the unbalancing is also possible in the line, 
the proposed method distinguishes between the input supply unbalance and stator winding fault conditions. 
Both the stator winding fault and unbalanced conditions are detected by a single ANFIS structure that is 
experimentally tested on a three-phase induction motor. The three phase stator currents and voltages are 
sensed for each of the faulty and normal cases. The three phase currents and voltages are passed through a 
signal-processing block where these signals are converted to three signals which are fed to the ANFIS for 
fault identification and classification of fault and unbalancing. The three signals that are fed to the ANFIS are 
the magnitudes of the negative sequence current, positive sequence current and negative sequence voltage. 
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The block diagram of the diagnostic system is shown in Fig. 1. The testing results of the ANFIS diagnostic 
system give over 99% accuracy in fault detection.  

 

Input Input_mf Rule Output_mf Output

 
Figure. 1. Block diagram of the diagnostic system Figure.                                     2. A typical ANFIS structure 

 

 
 
2. ADAPTIVE NEURO-FUZZY INFERENCE SYSYTEM: OVERVIEW 

ANFIS is a hybrid controller structure using a fuzzy logic inference system and the architecture of a 
neural network having five-layer feed-forward structure. Thus, the ANFIS offers the advantages of learning 
capability of neural networks and the inference mechanism of fuzzy logic. A typical architecture of ANFIS 
having n inputs, one output, and m rules is illustrated in Fig. 2 [20]. Here x, y, z and up to nare inputs, f is 
output, the cylinders represent fixed node functions, and the cubes represent adaptive node functions. This is 
a Sugeno type fuzzy system, where the fuzzy IF-THEN rules have the following form:  

 

Rule 1: If x is 1A  and y is 1B ,…  …..n  is 1  then 1f = ).......( 1111  zryqxp  

Rule 2: If x is 2A  and y is 2B ,……..n  is 2  then 2f = ).......( 2222  zryqxp . 

Rule m: If x is mA  and y is mB ,…..n  is m  then mf = ).......( mmmm zryqxp 
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The data obtained from normal, turn fault and different unbalanced supply voltages are utilized for 
ANFIS training and testing. Out of 10,000 collected data only 200 data is taken for training. The six set (three 
currents and three voltages) of 200 data each are fed to a signal processing block. The choice of 200 for the 
number of data is optimal from computational point of view. The outputs of the block are the magnitude of 
negative sequence current, positive sequence current and negative sequence voltage. These three parameters 
are fed to ANFIS structure. Another set of 200 data are used for testing the performance of the ANFIS. The 
rest of the data are used for checking the performance of the ANFIS. 
 
 
4. ANFIS BASED DIAGNOSTIC RESULTS 

 The neuro-adaptive learning method works similarly to that of neural networks. Neuro-adaptive 
learning techniques provide a method for the fuzzy modeling procedure to learn information about a data set. 
Fuzzy Logic Toolbox software computes the membership function parameters that best allow the associated 
fuzzy inference system to track the given input/output data. In the present case the initial model for ANFIS 
training is generated by applying subtractive clustering on the data. Subtractive clustering, [21], is a fast, one-
pass algorithm for estimating the number of clusters and the cluster centers in a set of data. The cluster 
estimates can be used to initialize iterative optimization-based clustering methods and model identification 
methods (like ANFIS).  

 The ANFIS model generates six input membership functions of Gaussian structure with the help of 
subtractive clustering method. The model is run for 200 Epochs. The structure of the ANFIS model is shown 
in Fig. 4. The post training input membership functions are displayed in Fig. 5.  

 

 

Figure 4. ANFIS structureFigure 5. Input membership functions developed by ANFIS 
 

 

Figure 6. Error curve of the ANFIS controller 
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 The root mean squared error for the training output is found to be 0.48%. The real fresh data are 
checked with the developed ANFIS model. The error is about 1%. Both the error curves are plotted in Fig. 6. 
The ANFIS output range is divided in nine categories. Each category or status of the machine is numerically 
defined as follows: 

No fault: 100, 1% Turn fault: 80, 5% Turn fault: 70, 10% Turn fault: 60, 5% Unbalance fault: 50, 4% Unbalance fault: 
40, 3% Unbalance fault: 30, 2% Unbalance fault: 20, 1% Unbalance fault: 10. Each of the faults is created with three 
different loading conditions a. No Load, b. Half Full Load, c. Full Load. 

The trained and checked ANFIS output for different types of fault diagnosis are shown in Fig. 7. 
The ANFIS performance is found to be excellent. The efficiency of developed ANFIS is about 99% which 
can be seen from Fig. 6. The input relationships or dependencies for the ANFIS output are also analyzed. 
These are the unique characteristics of adaptive neuro-fuzzy inference system. Unlike neural network, the 
input-output mapping in ANFIS is not a black box. The mapping is optimized by neuro adaptive learning 
techniques by fuzzy modeling procedure to learn information about the data set.  

 
 

5. CONCLUSION 
The main focus of this paper is to use ANFIS for the fault diagnosis of stator turn fault and 

unbalance supply fault. The ANFIS fault indicator is based on the analysis of magnitude of negative and 
positive sequence current and the magnitude of negative sequence voltage. The data collected from the 
experimental test bench were used for off-line training and checking of ANFIS based diagnostic controller. 
The data are collected for different fault possibilities. The performance of the ANFIS is found to be almost 
99% accurate for the diagnosis of fault. 
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