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 State estimation theory is one of the best mathematical approaches to 
analyze variants in the states of the system or process. The state of the 
system is defined by a set of variables that provide a complete 
representation of the internal condition at any given instant of time. 
Filtering of Random processes is referred to as Estimation, and is a well 
defined statistical technique. There are two types of state estimation 
processes, Linear and Nonlinear. Linear estimation of a system can easily 
be analyzed by using Kalman Filter (KF) but  is optimal only when the 
model is linear .But  Most of the state estimation problems are nonlinear, 
thereby limiting the practical applications of the KF and EKF. Unscented 
Kalman filter and Particle filter are best known for nonlinear estimates. 
The approach in this paper is to analyze the algorithm for maneuvering 
target tracking using   bearing only measurements for both Gaussian 
/Nongaussian distributions where UKF provides better probability of state 
estimation.  Montecarlo computer simulations are used to analyse the 
performance .The simulations results showed that UKF provides better 
performance for Gaussian distributed models compared to the 
nongaussian models. 
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1. INTRODUCTION 

 Control of any process modeling, obtained from a priori knowledge of certain observable parameters 
is standard practice for Engineers.  For many of the applications simple models with linear approximations 
around a design point suffice the requirement. Since all the natural phenomena are non-linear, it is very 
important to study the nonlinear models and their control for the following reasons: 
1) Some systems have a linear approximation that is non controllable near interesting working points. 

Linearization is ineffective even locally for such cases. 
2) Even if the linearized model is controllable one may wish to extend the operational domain beyond the 

validity domain into nonlinear region for better prediction. 
3) Some control problems are external to the process and cannot be answered by a linearly approached 

model. 
     The success of the linear model in identification or in control has its cause in the good understanding of it. 
A better mastery of invariants of nonlinear models for some transformations is a prerequisite to a true theory 
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of nonlinear identification and control. And all nonlinear systems are supposed to have a state space of finite 
dimension. State Estimation techniques are handled by filtering technique models for performance. 

A common approach to overcome this problem is to linearize the system before using the Kalman 
filter, resulting in an extended Kalman filter. This linearization does however pose some problems, e.g. it can 
result in nonrealistic estimates [1, 2] over a period of time. The development of better estimator algorithms 
for nonlinear Systems has therefore attracted a great deal of interest in the scientific community, because the 
improvements will undoubtedly have great impact in a wide range of engineering fields. The EKF has been 
considered the standard in the theory of nonlinear state estimation. This paper deals with how to estimate a 
nonlinear model with unscented kalman filter (UKF). The approach in this paper is to analyze 
UnscentedKalman filter where UKF provides better probability of state estimation for a bearing only passive 
target tracking. 

 
 

2. UNSCENTED KALMAN FILTER 
Instead of linearising the functions, UKF transform uses a set of points and propagates them through 

the actual nonlinear function, eliminating linearization altogether. The points are chosen such that their mean, 
covariance and higher order moments match the Gaussian random variable. Mean and covariance can be 
recalculated from the propagated points, to yield more accurate results compared to Taylor’s series ordinary 
function linearization.  

Selection of sample points is not arbitrary. Gaussian random variable in N dimensions uses 2N+1 
sample points. Matrix square root and Covariance definitions are used to select sigma points in such a way 
that their covariance is same as the Gaussian random variable.  

The unscented Transform approach has the advantage that noise is treated as a nonlinear function to 
account for non Gaussian or non additive noises. The strategy for doing so involves propagation of noise 
through functions by first augmenting the state vector to include noise sources. Sigma points are then 
selected from the augmented state, which includes noise values also. The net result is that any nonlinear 
effects of process and measurement noise are captured with the same accuracy as the rest of the state, which 
in turn increases estimation accuracy in presence of additive noise sources. 

 
 

3. AMODELLING EXAMPLE FOR MANEUVERING TARGET TRACKING USING BEARING 
ONLY MEASUREMENTS 

There are many methods available to obtain target motion parameters in sonar signal processing[3-
8].Target is assumed moving at constant course and constant speed. Its motion is updated every second. The 
own ship is also assumed to be stationary. It is assumed that noise in one bearing measurement is 
uncorrelated with that of the other. Another assumption is that the mean value of the noise is zero. In the 
simulator, random numbers are generated using central limit theorem. The output of Gaussian random 
generator is used as Gaussian noise for the Bearing measurements. The raw bearings are corrupted with the 
Gaussian noise. The output of another Gaussian random generator with given percentage input error is used 
to corrupt the frequency measurements. 
            The obtained bearing is modified according to the quadrant in which it exists such that its range is 
from 0-360 deg. (clock wise positive). The bearing is considered with respect to North. 
             Target parameters [R, B, C and S] and Own ship parameters [ocr and ospd] are read and taken as 
input by the simulator. Assumed error in Bearing measurement (sigma_b) and range measurement (sigma_r) 
are also fed as input. 
 
Assumptions: 

Following are the assumptions made in the simulator. 
1) At start, own ship is at the origin. 
2) Target is moving at constant velocity and 
3) All angles are considered with respect to Y-axis. 

 
3.1. Own ship motion 

The own ship motion is introduced as follows. Consider the fig 2 shown below.   The own ship is 
moving with a velocity v0,x0 is the distance of the own ship from the x-coordinate, y0is  the distance of the 
own ship from the y and  Ocr  is the angle making with north. From Fig 1. 
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 Sin (ocr) = x0 / v0    (1) 

   Cos (ocr) = y0 / v0     (2) 

 
For every second change in X and Y component of own ship position is found and added to the 

previous X, Y components of own ship position. 
       For    ts=1sec 
 dX0=v0*sin (Ocr)*ts    (3) 

 dY0=v0*cos (Ocr)*ts    (4) 
 

Where dX0 is change in X-component of own ship position in 1 sec. dY0 is change in Y-component 
of own ship position in 1 sec.  v0 is own ship velocity.Ocr is own ship course. (X0 Y0) is own ship position. 
Then 
 X0 = (X0 +dX0)         &      Y0 = (Y0   +dY0)   (5) 

 
3.2. Initial target position 
              From input bearing, initial position of target is known as follows.Considering Fig 2. Shown below. 
 

 
R-Range                                  T-Target O-Observer  
For    ts=1sec 

Xt= range*sin (bearing)         (6) 
Yt= range*cos (bearing)          (7) 

Where (Xt, Yt) is target position with respect to own ship as the origin 
 

3.3. Target Motion 

 The target motion is introduced as follows. Consider the Fig 3.shown below. 

 
                                Y (True North)                
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From input range and Bearing initial position of target is known, 
Xt=Range*sin(Bearing)                                                     (8) 
Yt=Range*cos (Bearing)         (9) 

(Xt, Y t) is target position with respect to own ship as the origin. 
 
For every 1 sec, change in Xt, and Y t are calculated and added to previous target position. 

 
dXt=  vt*sin (Tcr)*ts     (10) 
dYt=vt*cos (Tcr)*ts      (11) 

Xt = (Xt +dXt)and Yt = (Yt+dYt)      (12) 

 
Where dXtis change in X-component of target position in 1 sec   dYtis change in Y-component of 

target position in 1 sec. 
Vtis target velocity.Tcr is target course with respect to true  north. 

 
Xt = (Xt +dXt) and Yt = (Yt+dYt). 
 
The target is assumed to maintain fixed course and velocity through the observation duration. 

 
3.4. Target tracking and mathematical modeling 

State and measurement equations:The target is assumed to be moving with constant velocity as 
shown in the fig1. And is defined to have the state vector.  

 
Xs (k) = [ x (k) y (k) Rx (k)Ry (k) Wx(k) Wy(k)] T       (13) 

 
Where Rx (k)Ry(k) denote the relative range components between observer and target. The observer 

state is similarly defined as  
 

X0= [ x 0 y 0 x0 y0]
 T         (14) 

 

Fig 4.Target and observer encounter 

 
The target state dynamic equation is given by  

 
Xs (k+1) = (k+1/k) Xs (k) +b (k+1) +W (k)    (15) 

 
Where (k+1/k), b (k+1) and W (k) are transient matrix, deterministic vector and plant noise respectively. 
The transient matrix is given by 
 
(K+1/k)=       1 0 0 0   ts  0      0 
                                               0 1 0 0   0   ts 0          
ts0 1 0 ts

2/2 0     0 
                                               0 ts 0 1 0    ts

2/2 0 (16) 
                                               0 0 0 0   1    0    0 
                                               0 0 0 0   0    1    0      
                                               0 0 0 0    0   0    1         
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Where tsis sample time and b (k+1) is given by 

 

b (k+1)=[0 0 -(X(k+1)-X(k)) -(y(k+1)-y(k)) 0  0  0 ]T      (17) 
 
w (k)  is a zero mean gaussian noise vector with E [W (k) W (k) T] =Qkj. It is assumed that the measurement 
noise and plant noise are uncorrelated. The bearing measurement, modeled as  
 

Bm (k+1) =tanିଵ
ୖ୶ሺ୩ାଵሻ

ୖ ୷ሺ୩ାଵሻ
        (18) 

 
Where kjthe Kronecker delta function, and (k) is error in the measurement and this error is 

assumed to be zero mean Gaussian with variance 2.The measurement and plant noises are to be uncorrelated 
to each other. 
Kronecker Delta Function: 
kj =1       if    k=j 

0        if   k≠j  (19) 
 

 
4. FILTER MODEL FORMULATION 
4.1. Augmentation of State Vector  

The filter starts by augmenting the state vector to N Dimensions, where N is the sum of dimensions 
in the original state-vector, model noise and measurement noise.  

The covariance matrix is similarly augmented to a N2 matrix. Together this forms the augmented 
stateढࢇ estimate vector and covariance matrix  ࢇࡼ :  
 

(20) 
 
 
 

     

(21) 

 
4.2. Creating 2N+1 sigma-points   

The ढࢇmatrix is chosen to contain these points, and its columns are calculated as follows:  
 

   

  
 

     (22) 
 
Subscript ‘i’meansith column of the square root of thecovariance matrix. The parameter  α ,  in the 

interval  0 < α<1, determines sigma-point spread. This parameter is typically quite low, normally around 
0.001, to avoid non-local effects. The resulting matrixढି࢑૚

ࢇ  can now be decomposed vertically into theढି࢑૚
࢞   

rows, which contains the state;  
The rows ढି࢑૚

ࢃ , which contain sampled process noise and  
The rows ढି࢑૚

ࢂ , which contain sampled measurement noise. 
 
4.3. Weightage in Estimation  

Each sigma-point is also assigned a weight. The resulting weights for mean and covariance (C) 
estimates then become:  
 

 

 

      (23) 
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4.4. Estimation  
The filter then predicts next state by propagating the sigma-points through the state and 

measurement models, and then calculating weighted averages and covariance matrices of the results:  
 

 

 

        (24) 

 
4.5. Mean and Covariance  

The predictions are then updated with new measurements by first calculating the measurement 
covariance and state measurement cross correlation matrices, which are then used to determine Kalman gain - 
New state of the system; - Its associated covariance - Expected observation; - Cross-correlation matrix - 
Kalman Gain 
 

      

 (25) 

      
(26) 

          (27) 

       (28) 

        (29) 

 -  New state of the system;     - Its associated covariance  

 -      Expected observation;        - Cross-correlation matrix  -Kalman Gain 

 
The properties of this algorithm:  

1) Since the mean and covariance of x are captured precisely up to the second order, the calculated values 
of the mean and covariance of Nonlinear function (Yi = f [Xi]) are correct to the second order as well. 
This means that the mean is calculated to a higher order of accuracy than the EKF, whereas the 
covariance is calculated to the same order of accuracy. However, there are further performance 
benefits. Since the distribution of x is being approximated rather than the function, its series expansion 
is not truncated in a particular order. It can be shown that the unscented algorithm is able to partially 
incorporate information from the higher orders, leading to even greater accuracy.  

2) The sigma points capture the same mean and covariance irrespective of the choice of matrix square 
root which is used. 

3) The mean and covariance are calculated using standard vector and matrix operations. This means that 
the algorithm is suitable for any choice of process model, and implementation is extremely rapid 
because it is not necessary to evaluate the Jacobeans which are needed in an EKF. 
 
 

5. RESULTS 
The results are anlysed for UKF in the presence of Gaussian noise and Nongaussian noise for the 

initial conditions given below. 
 
 

      Parameter Scenario1 

Initial range, meters 5000 

Initial bearing, deg 0 

Target speed, meters/sec 2 

Target course,deg 135 

Observer speed, meters/sec 10 

Observer course, deg 90 

Error in the bearing, deg(one 
sigma) 

0.33 
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Fig 5. estimation errors of Target Motion Parameters (Range,Bearing,Course and Speed) in the precence of 

Gaussian noise 
 

Analysis: 
Duration of run: 1800 sec. 
Time taken for convergence of Range for maneuver target is 1039 sec. 
Time taken for convergence of Course for maneuver target is 1319 sec. 
Time taken for convergence of Speedfor maneuver target is 917 sec. 
 

 
Fig 6. estimation errors of Target Motion Parameters (Range,Bearing,Course and Speed) in the precence of 

Nongaussian noise 
 

Analysis: 

Duration of run: 1800 sec. 
Time taken for convergence of Range for maneuver target is 1647 sec. 
Time taken for convergence of Course for maneuver target is 1630 sec. 
Time taken for convergence of Speedfor maneuver target is 1646sec. 
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Fig 7. Comparison UKF for Gaussian and Non-Gaussian disribution 

 
6. CONCLUSIONS 

Application of KF to nonlinear systems results in highly inaccurate estimates. This paper looks into 
the need to consistently predict the new state and observation of the system with the presentation of UKF for 
nonlinear systems. We have used the nonlinear algorithm, UKF that has two great advantages over the KF. 
First, it is able to predict the state of the system more accurately. Second, it is much less difficult to 
implement. The benefits of the algorithm were demonstrated in a realistic example, bearing only passive 
target tracking. This paper has considered one specific form of the unscented transform for one particular set 
of assumptions. It is shown that the number of sigma points can be extended to yield a Filter which matches 
moments up to the fourth order. This higher order extension effectively de-biases almost all common 
nonlinear coordinate transformations. 

The paper began with the simulation of the motion of the target and determining the initial target 
parameter namely bearing. This parameter was then corrupted with noise (The noise is assumed to be 
Gaussian and nongaussian and the results are compared and analyzed for two cases) to get the noisy 
measurements. Extended Kalman Filter can filter the noisy measurements and extend the target motion 
parameters but is having computational difficulties. The unscented Kalman Filter algorithm reduces this 
difficulty. Subsequently, maneuvering of the own ship was detected using relative Bearing algorithm and 
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CPA algorithm. Then the state of the target was corrected accordingly after the detection of correct own ship 
evasion. Monte-Carlo simulation was carried out in the end in a number of scenarios. 

The results confirm that the failure rate of UKF is insignificant. For the UKF the initial errors in x 
position were more than 160m under the assumption of Gaussian noise, and are more in the case of 
nongaussian distributions, i.e thetarget motion parameters converges at an earlier time Under the assumption 
of Gaussian noise than  Nongaussian noise. Therefore we may conclude that UKF is robust algorithm for 
Gaussian distributions than for Nongaussian distributions. 

The performance can further be improved in the presence of nongaussian noise by taking more 
number of sample points and is referred to as Particle filter. 
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