
International Journal of Electrical and Computer Engineering (IJECE)
Vol.3, No.1, February 2013, pp. 21~29
ISSN: 2088-8708  22

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Theoretical Analysis on Scale-down Aware Service Allocation in
Cloud Storage Systems

Angli Liu
Department of Electronic Engineering, Tsinghua University

Article Info ABSTRACT

Article history:

Received Nov 13, 2012
Revised Jan 12, 2013
Accepted Jan 24, 2013

 Servcie allocation algorithms have been drawing popularity in cloud
computing research community. There has been lots of research on
improvingservice allocation schemes for high utilization, latency reduction
and VM migration enfficient, but few work focus on energy consumption
affected by instance placement in data centers.

In this paper we propose an algorithm in which to maximize the number of
freed-up machines in data centers, machines that host purely scale-down
instances, which are reuiqred to be shut down for energy saving at certain
points of time. We intuitively employ a probability partitioning mechanism
to schedule services such that the goal of the maximization can be achieved.
Furthermore we perform a set of experiments to test the partitioning rules,
which show that the proposed algorithms can dynamically increase the
number of freed-up machines substantially.

Keyword:

Cloud computing
Service scheduling
Energy efficiency
Probability partitioning
Workload Model

Copyright © 2013 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Angli Liu,
Departement of Electronic Engineering,
Tsinghua University,
Beijing, 100084, China.
Email: xbeiba@gmail.com

1. INTRODUCTION

We consider such a problem where services are continuously inserted into a one-cluster data center.
In each service, the instance# in each UD ூܰ௡௦௧௔௡௖௘௉௘௥௎஽ is subject to a certain
distributionF(ூܰ௡௦௧௔௡௖௘௉௘௥௎஽),say U(1, 10), the UD# in each service ௎ܰ஽ is subject to another distribution
F(௎ܰ஽), say U(1, 5), and the UD is assigned to each instance in a round-robin fashion. We would like to
figure out to which node we allocate each instance such that the expected number of freed-up nodes, nodes
that host purely scale-down instances, can be maximized.

For the allocation coordinator (AC) in the data center, the known parameters are the index, size, UD,
FD of each instance and the probability distribution of the scale-down threshold instance index in each
service, meaning that instances with indices larger than this probabilistically set threshold will scale down
and instances with indices lower will not.

On the other hand, what the AC does not exactly is whether an instance is a scale-down one or not;
it will be shown that the AC, in turn, can know the scale-down probability of an instance. Therefore, we need
to use the known parameters and distributions to design some rules for the AC to allocate instances in order
to maximize the freed-up node count.

2. PROBLEM FORMULATION

Intuitively, should instances with high scale-down probability be grouped and instances with low
scale-down probability are gathered in other groups of nodes, the expectation of freed-up node count will be

  ISSN: 2088-8708

IJECE Vol. 3, No. 1, February 2013 : 21 –29

22

larger than just randomly allocate instances. So the problem is divided into two parts: how many groups, or
segments, should we use, and how to partition the probability line into segments. Basically we can tackle
these two sub-problems independently. First we can use a fixed number of segments for partitioning in order
to find out the rules for grouping instances, or partitioning the probability line, and then we can study the
impact of the number of segments on the expected number of freed-up nodes.

2.1. Probability Partitioning

A partitioning rule can be illustrated as in Fig. 1, where the x-axis stands for machine count in a
segment, and the y-axis stands for the probability line.

Figure 1. Partitioning the probability line

Having this been illustrated, we would further like to know what the proportion of the instances is
that will be assigned to a certain segment, formulated by ሺݔ௞, ௞ାଵሻ, so that the number of nodes, especiallyݔ
freed-up nodes in each segments can be further determined using this instance number.

2.2. Scale-down probability distribution in terms of indices

To work out this instance number, we can first bridge the index of an instance in its host service and
the instance scale-down probability. Provided that the scale-down threshold index distribution curve, noted as
௝ܶሺݔሻ, is known, we can do the integral on this curve from 0 to the index of the instance we consider, say ݅,

and the result of the integral will be the scale-down probability of the instance with this index in this
particular service, as shown in Fig. 2, where j is for labeling the service size.

Figure 2.The calculation of the scale-down probability of an instance in a service scale

If we want to know the general scale-down threshold probability in terms of an index, we need to
know the distribution of instance number (maximum index) in a service and weight it on the scale-down
probability of an instance with this index in a service. So we would like to exactly know the relationship
between the probability of the occurrence of an index and an index, i.e., the probability density function of

IJECE ISSN: 2088-8708 

Theoretical Analysis on Scale-down Aware Service Allocation in Cloud Storage Systems (Angli Liu)

23

instance index, so we can do the weighting. In fact, we already know the UD distribution and instance
number distribution in a UD. And the instance index, which is the product of the UD count and instance
count per UD, ூܰ௡௦௧௔௡௖௘௉௘௥௎஽ ൈ ௎ܰ஽, can be easily worked out using the two independent distributions. For
example, if these two are subject to uniform distribution, then this product subject to

ܲሺ ூܰ௡௦௧௔௡௖௘ ൏ ܰሻ ൌ ܲ ൬ ௎ܰ஽ ൏
ܰ

ூܰ௡௦௧௔௡௖௘௉௘௥௎஽
൰ ൌ ෍ ܲሺ ௎ܰ஽ ൏

ܰ

݆
| ூܰ௡௦௧௔௡௖௘௉௘௥௎஽ ൌ ݆ሻܲሺ ௣ܰ௘௥௎஽ ൌ ݆ሻ

௣௘௥௎஽#

௝ୀଵ

ൌ ෍
ܰ

݆

1

#ܦܷ

ூ௡௦௧௔௡௖௘௉௘௥௎஽#

௝ୀே/௎஽#

as shown in Fig. 3. We note this curve as ݏሺ݇ሻ.

Figure 3. Index distribution

To get the general scale-down threshold probability distribution Q(x) in terms of indices, we just
need to weight each ݏሺ݆ሻ on ௝ܶሺݔሻ and sum them up, as follows

ܳሺݔሻ ൌ ෍ݏሺ݆ሻ ௝ܶሺݔሻ

௝

Then, as in Fig. 2, we do the integral for ܳሺݔሻ and get the general scale-down probability

distribution ܲሺݔሻ.

ܲሺݔሻ ൌ න ܳሺݕሻ݀ݕ
௫

଴

With this and the probability partitioning as described in A, we can exactly map a certain probability

segment to an instance index range, as shown in Fig. 4.

Figure 4. Mapping a scale-down probability segment to an instance index range

  ISSN: 2088-8708

IJECE Vol. 3, No. 1, February 2013 : 21 –29

24

2.3. The proportion of instances assigned to a certain scale-down probability segment
With the above mapping and the index distribution shown in Fig. 3, we can actually work out the

proportion of incoming instances that will be assigned to a certain probability segment, as shown in Fig. 5,
where we calculate the area of the shadow area to get this proportion.

Figure 5. Instance proportion mapping

2.4. UD count in each segment

It is not enough if we just stop here, because we have not worked out the freed-up node count in
each segment, which is the final determinant to whether a partitioning rule is good or bad. However, with the
instance proportion, we are actually able to work the freed-up node count out, using the relationship between
instance index and the UD count, which largely determines the node count in a probability segment.
 What we are exactly doing is working out the UD count when the instance index is provided, or a
range of instance indices is given. Using Bayes’ Formula, we can work this out, as presented below

ܲሺܷܦ# ൌ ݔ݁݀݊݅|݊ ൌ ݇ሻ ൌ
ܲሺܷܦ# ൌ ݊ሻܲሺ݅݊݀݁ݔ ൌ #ܦܷ|݇ ൌ ݊ሻ

ܲሺ݅݊݀݁ݔ ൌ ݇ሻ

In the above equation, ܲሺ݅݊݀݁ݔ ൌ ݇ሻ is given by ݏሺ݇ሻ, which we already have in B, ܲሺܷܦ# ൌ ݊ሻ is

known initially, and ܲሺ݅݊݀݁ݔ ൌ #ܦܷ|݇ ൌ ݊ሻ can be derived by adding several independent UD#
distributions together. This could be easy if UD# in a service is subject to uniform distribution. Now we draw
out ܷሺݔሻ, i.e., ܲሺܷܦ# ൌ ݔ݁݀݊݅|݊ ൌ ݇ሻ, the relationship between index and UD#, as in Fig. 6.

Figure 6. The relationship between UD# and instance index

IJECE ISSN: 2088-8708 

Theoretical Analysis on Scale-down Aware Service Allocation in Cloud Storage Systems (Angli Liu)

25

Conclusively, using a probability segment, we are able to know the proportion of incoming
instances that will be assigned to this segment. The entire mapping is shown in Fig. 7.

Figure 7. Mapping the probability segments to average UD#

2.5. Freed-up node count in each segment

Because the final goal is to formulate the freed-up node count in each segment, and we are not there,
we need to find out these two things: the node count in each segment and freed-up probability of a node in
each segment.

The first one is able to be given by the average UD# in a segment. Since the node count is only
determined by UD# and FD#, and FD is independent from UD, the node count is proportional to the average
UD# with a coefficient ߚ related to the FD constraint and the workload ingredient, as follows

௡ܰ௢ௗ௘
തതതതതതതሺݔ௞, ௞ାଵሻݔ ൌ ሻ݀ܽ݋݈݇ݎ݋ݓ,ܦܨሺߚ

׬ ܷሺݔሻ݀ݔ
௉ሺೣೖశభሻ
షభ

௉ሺೣೖሻ
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ

As for the second one, the freed-up probability of a node, we need to figure out how possible on

average does an instance in a segment scales down. Luckily, we already have Fig. 4, where the scale-down
probability distribution is right mapped to scale-down probability partitioning. As a result, the probability of
an instance assigned to segment ሺݔ௞, ௞ାଵሻ to scale down on average is given byݔ

ܲሺ݈݁ܽܿݏ െ ሻതതതതതതതതതതതതതതതതതതതതതത݊ݓ݋݀ ൌ

׬ ܲሺݔሻ݀ݔ
௉ሺೣೖశభሻ
షభ

௉ሺೣೖሻ
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ

Taking into account the average size of an instance ݏଓ݁ݖതതതതത, depending on the workload ingredient, we

can get the “expected” freed-up probability of a node in segment ሺݔ௞, ௞ାଵሻݔ

  ISSN: 2088-8708

IJECE Vol. 3, No. 1, February 2013 : 21 –29

26

ܲሺ݂݀݁݁ݎ െ ሻ݌ݑ ൌ ܲሺ݈݁ܽܿݏ െ ሻതതതതതതതതതതതതതതതതതതതതതത݊ݓ݋݀
೑ഢ೗೗೐೏ ೎೚ೝ೐തതതതതതതതതതതതതതതതത

ೞഢ೥೐തതതതതത ൌ ሺ

׬ ܲሺݔሻ݀ݔ
௉
൫ೣೖశభ൯
షభ

௉
൫ೣೖ൯
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ሻ
೑ഢ೗೗೐೏ ೎೚ೝ೐തതതതതതതതതതതതതതതതത

ೞഢ೥೐തതതതതത

ൌ ሺ

׬ ܲሺݔሻ݀ݔ
௉
൫ೣೖశభ൯
షభ

௉
൫ೣೖ൯
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ሻఈሺ௧௛௥௢௧௧௟௘, ௪௢௥௞௟௢௔ௗሻ

whereߙ is only related to the workload ingredient the utilization throttle.

 In summary, in segment ሺݔ௞, ௞ାଵሻ, the average freed-up node count is given byݔ

௙ܰ௥௘௘ௗି௨௣
തതതതതതതതതതതതሺݔ௞, ௞ାଵሻݔ ൌ ߚ ∙

׬ ܷሺݔሻ݀ݔ
௉ሺೣೖశభሻ
షభ

௉ሺೣೖሻ
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ∙ ሺ

׬ ܲሺݔሻ݀ݔ
௉
൫ೣೖశభ൯
షభ

௉
൫ೣೖ൯
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ሻఈ

Where ߙ and ߚ is related to the workload ingredient, the FD constraint and the utilization throttle.

Finally, the expectation of freed-up node count in the entire data center is given by

௙ܰ௥௘௘ௗି௨௣ ൌ ෍ ௙ܰ௥௘௘ௗି௨௣
തതതതതതതതതതതതሺݔ௞, ௞ାଵሻݔ

௞

ൌ ෍ߚ

׬ ܷሺݔሻ݀ݔ
௉ሺೣೖశభሻ
షభ

௉ሺೣೖሻ
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ∙ ሺ

׬ ܲሺݔሻ݀ݔ
௉
൫ೣೖశభ൯
షభ

௉
൫ೣೖ൯
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ሻఈ

௞

ൌ ෍ߚ

׬ ܷሺݔሻ݀ݔ
௉ሺೣೖశభሻ
షభ

௉ሺೣೖሻ
షభ ∙ ሺ׬ ܲሺݔሻ݀ݔ

௉
൫ೣೖశభ൯
షభ

௉
൫ೣೖ൯
షభ ሻఈ

ሺ ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ ሻఈାଵ
௞

Where both ܷሺݔሻandܲሺݔሻ are dependent on ݏሺ݇ሻ, the instance index distribution.

3. PROBLEM SOLVING

Using ௙ܰ௥௘௘ௗି௨௣, theoretically we can determine each ݔ௞ by letting

߲ ௙ܰ௥௘௘ௗି௨௣

௞ݔ߲
ൌ 0

݇ ൌ 1, 2, … ܯ, െ 1

And the boundary conditions are

෍ ௡ܰ௢ௗ௘
തതതതതതതሺݔ௞, ௞ାଵሻݔ

௞

ൌ ෍ߚ

׬ ܷሺݔሻ݀ݔ
௉
൫ೣೖశభ൯
షభ

௉
൫ೣೖ൯
షభ

ሺܲ௫ೖశభሻ
ିଵ െ ሺܲ௫ೖሻ

ିଵ

௞

ൌ ܥ

଴ݔ ൌ 0
ெݔ ൌ 1

0 ൏ ଵݔ ൏ ⋯ ൏ ௞ݔ ൏ ⋯ ൏ ெିଵݔ ൏ 1

Where ܥ is the total number of nodes in the data center, and ܯ is the number of segments on the
scale-down probability line.
 After we work out these segment ends, we can use the following rules to allocate the incoming
instances.
1) Based on the probability partitioning, assign a probability slot for this instance, and allocate it using PS-

SUD algorithm within this segment. If the current machines cannot host this instance, request an
additional empty machine.

IJECE ISSN: 2088-8708 

Theoretical Analysis on Scale-down Aware Service Allocation in Cloud Storage Systems (Angli Liu)

27

2) If the utilization throttle is hit in this probability segment, request to allocate this instance onto another
available (PS-SUD determined) machine that corresponds to the closet possible probability segment, in
order to avoid big variance of scale-down probability of instances within the same segment.

4. EVALUATION
 The above equations, while extracted by reasonable approximations, are of big difficulty to solve,
and especially they are highly ܷሺݔሻ- and ܲሺݔሻ-oriented. Therefore, we propose these four potential solutions
aiming to find out a better partitioning rule, corresponding to the four curves in Fig. 7.

1) Uniform Partitioning
Let ܲሺ݈݁ܽܿݏ െ ݈݁ܽܿݏሻ be partitioned in a sense that in each ܲሺ݊ݓ݋݀ െ ሻ segment, the differences of݊ݓ݋݀
the two ends are equivalent, so as to achieve the “uniform partitioning”.

2) Probability-equivalent Partitioning
Let ܲሺݔሻ be partitioned in a sense that in each ܲሺݔሻ segment, the areas between the two ends are equivalent,
so as to achieve the “probability-equivalent partitioning”.

3) Instance#-equivalent Partitioning
Let ݏሺ݇ሻ be partitioned in a sense that in each ݏሺ݇ሻ segment, the areas between the two ends are equivalent,
so as to achieve the “instance#-equivalent partitioning”.

4) Node#-equivalent Partitioning
Let ܷሺݔሻ be partitioned in a sense that in each ܷሺݔሻ segment, the areas between the two ends are equivalent,
so as to achieve the “node#-equivalent partitioning”.

Table 1. Segment# = 1
Algorithm Freed-up node ratio/% Scale-down instance ratio/% Empty node ratio/%
Random 0 1.63 8.2

Table 2. Segment# = 2

Algorithm Freed-up node ratio/% Scale-down instance ratio/% Empty node ratio/%
Uniform 0.6 17.20 3.8

Probability-equivalent 0.6 17.62 3.6
Instance#-equivalent 1.2 17.38 2.5

Node#-equivalent 3.6 17.61 2.1

Table 3. Segment# = 4

Algorithm Freed-up node ratio/% Scale-down instance ratio/% Empty node ratio/%
Uniform 0.8 17.20 2.6

Probability-equivalent 0.9 17.62 3.5
Instance#-equivalent 1.8 17.39 2.1

Node#-equivalent 4.5 17.61 2.1

Table 4. Segment# = 8

Algorithm Freed-up node ratio/% Scale-down instance ratio/% Empty node ratio/%
Uniform 1.3 17.20 1.1

Probability-equivalent 1.9 17.63 3.2
Instance#-equivalent 2.4 17.28 1.9

Node#-equivalent 9.3 17.59 0.5

We should note that in the above tables, empty node ratio less than 10% when the utilization throttle
is set to 90% does not mean the utilization is not 90%; it is because many nodes are not fully assigned, yet
fewer nodes are completely empty. In addition, in terms of the different algorithms, that the resulting scale-
down instance ratios are different is because these algorithms can aggregate scaling down instances in nature,
to different degrees, thus putting non-scale-down instances to retries. In conclusion, from these tables, we can
conclude that the more segments, the better performance regarding the freed-up node count. And in general,
the “Node#-equivalent partitioning” is the best one in practice.

5. RELATED WORK

There are lots of works on data center architectures and service allocation algorithms. [1] proposes a
MAC protocol based on TDMA for high bandwidth for MapReduce shuffle workloads. [2] makes the data

  ISSN: 2088-8708

IJECE Vol. 3, No. 1, February 2013 : 21 –29

28

centers wireless using the 60GHz technique for augmenting data center networks. [3] explores the potential
of using Bloom-Filter routing to enable content discovery in vehicle cloud. [4] poses the 3D signal bouncing
solution for inter-rack communication in data centers. [5] discusses the feasibility of completely wireless data
centers theoretically and empirically. [6] presentsCarcel, which is a sensor system assisted by clouds. These
are about how to leverage wireless communication to enhance service allocation in data centers and how
clouds can help wireless networks from an application perspective.

 VMTorrent [7] proposes block periodization profile-based prefetch, on-demand fetch, and
decoupling of VM image presentation from underlying data-stream. [8] presents a stochastic model of load
balancing and scheduling in clouds. It is worth noting that there is also work [9] on flexible-bandwidth
abstractions that reduce the cost to cloud tenants. In addition, on a general level, Wrasse [10] addresses
resource allocation for the cloud. And Bazaar [11] is a cloud framework offering a job-centric interface for
data analytics applications. We are also looking at re-architecting the cloud storage from a view of
accelerating the data center updates and improving energy efficiency. In addition, [12] can deliberately guide
the placement of workloads to improve performance by selectively switching workloads off poorly
performing machines by placement gaming.

 To address networking problems in data centers, [13] combats port blackout and TCP outcast
problem. In terms of credibility, Depot [14] is acloud storage architecture with minimal trust. VDN [15]
redesigns virtual machine imaging in data centers. To save cost, [16] are achieving this by scaling down
instances, using less cache. Also node sleep policies are discussed in [17] for saving power for data centers,
but not in a service scaling down perspective. [18] proposesa heuristic for consistent VM migration while
meeting constraints on bandwidth and loop-freedom. Sybil-Control [19] presents a novel decentralized
scheme for controlling the extent of Sybil attacks, where an adversary subverts system operation by
emulating the behavior of multiple distinct nodes. As for flow control, PDQ [20] realizes a flow scheduling
protocol halting the contending flows by a shortest job first algorithm.

 Data center network architectures have also been talked about as they are tightly related to the data
center capacity. Jellyfish [21] is a random graph topologically based data center network more cost efficient
than fat-trees, and is of more capacity advantage with more scale. HULL [22] uses Phantom Queues and
DCTCP to reduce long tail latencies. SCC [23] automates the selection of cluster storage configuration based
on service level agreement, hardware and workloads. Netshare and stochastic Netshare [24] are implemented
in a sense that bandwidth is allocated predictably across weighted services. The weights are specified by a
manager or at each switch port based on a virtual machine heuristic for isolation. Chronos [25] changes the
current status of setting low utilization to rein in latency outliers. ThemisMR [26] is a MapReduce
implementation that minimizes I/O operations at nearly the speed of TritonSort’s record-setting sort
performance, and achieves job-level fault tolerance instead of task-level fault tolerance. BlueSky [27] is a
LAN-oriented workstation file system backed by cloud storage, a caching proxy architecture as traditional
network file service is replaced with commodity cloud services.

Regarding service allocation management, in [28], Delta-SimRank proposes an efficient algorithm
to compute SimRank on MapReduce for static graphs and dynamic graphs. VCRIB [29] places rules on both
hypervisors and switches level, to achieve a good trade-off between resource usage and performance. It is an
abstraction for all types of data center management rules decoupling rule definition from rule partitioning and
placement. [30] studies several key requirements and properties for network allocation in data centers,
identifying three main requirements: min-guarantee, proportionality and high utilization, and a set of
properties to guide the design of allocation policies in the trade-off space. APLOMB [31] holds outsourcing
the vast majority of middleboxes from a typical enterprise network without impacting performance, making
scalable, affordable middlebox processing accessible to enterprise network of every size. However, these
works have not exclusively looked at the solution for saving energy by re-architecting the data center storage
with adaptive service scheduling rules so that nodes that host purely scale-down instances are able to be
maximized.

6. CONCLUSION

We use an intuitive method that gathering the instances with similar scale-down probability to
maximize the freed-up node count in the one-cluster data center. Performing the theoretical derivations, we
get the final equations for solving the partitioning end points and the relative boundary conditions. Then we
propose four practical partitioning rules informed by the theoretical derivations to do the freed-up node count
optimization. The experiment results show that the “node#-equivalent” partitioning algorithm is the best
among the proposed four. In future works, we would like to 1) investigate the average improvement of the
partitioning rules through several rounds of service scaling-down,2) their impacts on the OS update

IJECE ISSN: 2088-8708 

Theoretical Analysis on Scale-down Aware Service Allocation in Cloud Storage Systems (Angli Liu)

29

performance in terms of duration, and 3) the upper bound of the performance of scale-down probability
partitioning performance, where the job size will fully be taken into consideration.

REFERENCES
[1] B. Vattikonda, et al., "Practical TDMA for datacenter Ethernet," EuroSys’12
[2] D. Halperin, et al., "Augmenting data center networks with multi-gigabit wireless links," SIGCOMM’11
[3] Y. Yu, et al., "Content Routing In The Vehicle Cloud," MILCOM’12
[4] X. Zhou, et al., "Mirror Mirror on the Ceiling: Flexible Wireless Links for Data Centers," SIGCOMM’12
[5] J. Shin, et al., "On the Feasibility of Completely Wireless Datacenters," ANCS’12
[6] S. Kumar, et al., "A cloud-assisted design for autonomous driving," SIGCOMM MCC’12
[7] J. Reich, et al., "VMTorrent: Scalable P2P Virtual Machine Streaming," CoNEXT’12
[8] S. Maguluri, et al., "chastic Models of Load Balancing and Scheduling in Cloud Computing Clusters,"

INFOCOM’12
[9] D. Xie, et al., "The Only Constant is Change: Incorporating Time-Varying Network Reservations in Data Centers,"

SIGCOMM’12
[10] A. Rai, et al., "Generalizing Resource Allocation for the Cloud," SOCC’12
[11] V. Jalaparti, et al., "Bridging the Tenant-Provider Gap in Cloud Services," SOCC’12
[12] B. Farley, et al., "More for Your Money: Exploiting Performance Heterogeneity in Public Clouds," SOCC’12
[13] P. Prakash, et al., "The TCP Outcast Problem: Exposing Unfairness in Data Center Networks," NSDI’12
[14] P. Mahajan, et al., "Depot: Cloud Storage with Minimal Trust," ToCS’11
[15] C. Peng, et al., "VDN: Virtual Machine Image Distribution Network for Cloud Data Centers," INFOCOM’12
[16] T. Zhu, et al., "Saving Cash by Using Less Cache," HotCloud’12
[17] A. Gandhi, et al., "Are Sleep States Effective in Data Centers," IGCC’12
[18] S. Ghorbani , et al., "Walk the Line: Consistent Network Updates with Bandwidth Guarantees," HotSDN’12
[19] F. Li, et al., "SybilControl: practical sybil defense with computational puzzles," STC’12
[20] C. Hong, et al., "Finishing flows quickly with preemptive scheduling," SIGCOMM’12
[21] A. Singla, et al., "Jellyfish: Networking Data Centers Randomly," NSDI’12
[22] A. Alizadeh, et al., "Less Is More: Trading a Little Bandwidth for Ultra-Low Latency in the Data Center," NSDI’12
[23] H. Madhyastha, et al., "scc: Cluster Storage Provisioning Informed by Application Characteristics and SLAs,"

FAST’12
[24] V. Lam, et al., "Netshare and stochastic netshare: predictable bandwidth allocation for data centers," CCR’12
[25] R. Kapoor, et al., "Chronos: Predictable Low Latency for Data Center Applications," SOCC’12
[26] A. Rasmussen, et al., "Themis: An I/O Efficient MapReduce," SOCC’12
[27] M. Vrable, et al., "BlueSky: A Cloud-Backed File System for the Enterprise," FAST’12
[28] L. Cao, et al., "Delta-SimRank Computing on MapReduce," BigMine’12
[29] M. Moshref, et al., "vCRIB: Virtualized Rule Management in the Cloud," HotCloud’12
[30] L. Popa, et al., "FairCloud: Sharing The Network In Cloud Computing," SIGCOMM’12
[31] J. Sherry, et al., "Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service,"

SIGCOMM’12

