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1. INTRODUCTION

The aim of any system identification technique is to establish a mathematical model able to
reproduce the dynamic behaviour of a system. Many methods have been developed using continuous time
models [1], [2], [3].

Studies on real systems such as thermal [4] or electrochemical [5], reveal inherent fractional
differentiation behavior. The use of classical methods (based on integer order differentiation) is thus
inappropriate in identifying these fractional systems. Thus, fractional models, using fractional differentiation,
have been developed [6], [7], [8], [9].

A fractional model is defined by an equation or a system of differential equations characterized by
real derivative orders, integer or not integer, i.e. in the monovariable case:
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Where u(¢) and y(¢) are respectively the input and the output of the system.
The fractional derivative orders verify:

m <my <---<my 2
In the context of parameter estimation, the study of Equation (1) reveals that the

differentialoperators coefficients act linearly whereas the derivative orders act non-linearly. Two cases of
study are then to distinguish.
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The first is the case of a dynamic system where the derivative orders are fixed a priori. Only the
coefficients of operators are then subject to parametric estimation. Based on the equation error method, the
optimization techniques used are linear towards the parameters and allow a direct estimate.

In the second case, presented in this paper, the derivative orders have to be estimated in the same
way that the coefficients. Based on the output error method, the optimization techniques used are non linear
towards the parameters and algorithms involve non linear programming (NLP).

The paper is organized as follows. Definitions related to fractional integration in section Il. After a
reminder of principles related to state-space representation of the fractional integration operator in section Ill,
the state space model of a fractional system is presented in section IV. An output error technique is presented
in section V. Using the Matlab toolbox, the frequency domain approach and the modal approach of the non
integer integrator, an application to numerical simulation on an example is presented in section V1. Finally, in
section VI, we propose a comparison between the identification techniques.

2. FRACTIONAL DIFFERENTIATION AND INTEGRATION
Fractional integration is defined by the Riemann-Liouville Integral [10], [11], [12], [13]. The n"
order integral (nreal positive) of the function f(¢) is defined by the relation:

t

LU =o€ @ ®
0

Where I'(n) = Ix”’le’xdx is the gamma function.
0
1, (f(2)) is interpreted as the convolution [11] of the function f(¢) with the impulse response:

Z(n—l
h (1) = 4
a (0) ) (4)
Of the fractional integration operator whose Laplace transform is:
1
I,(s)= L{h, () }==- 5)
S

Fractional differentiation is the dual operation of the fractional integration.
Consider the fractional integration operator 7, (s) whose input/output are respectively x(f) and y(?).

Then:

y(1) =1, (x(1)) (6)
or

()= X () )

Reciprocally, x(7) is the n™ order fractional derivative of y(¢) defined as:

x(t) = D, (»(1)) )
Or

X(s)=s"Y(s) ©)

Where s" represents the Laplace transform of the fractional differentiation operator (with zero
initial conditions).

3. SATE-SPACE REPRESENTATION OF THE FRACTIONAL INTEGRATION OPERATOR
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3.1. Fractional integrator based on a frequency approach
3.1.1. Principle

Let us consider the Bode plots of a fractional integrator truncated in low and high frequencies
(Figure 1) [14].
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Figure 1. Bode Diagram of the Fractional Integrator

It is composed of three parts. The intermediary part corresponds to non-integer action, characterized
by the order n. In the two other parts, the integrator has a conventional action, characterized by its order equal

to 1. In this way, the operator fn (s) is defined as a conventional integrator, except in a limited band [w,, ;]

where it acts like s™ . The operator fn (s) is defined using a fractional phase-lead filter [10] and an integrator

st

7o) = G — (10)

The coefficient G, is a normalized factor, such as fn (s) and I,(s) are identical on[w,,®,].
This operator is completely defined by the following relations demonstrated by A. Oustaloup [10]:

;= aw, witha >1

o =no;withy >1 (11)
he1 loga
logan

«a and 7 are recursive parameters related to the non integer order n. When J is sufficiently large, the bode

diagram of fn (s) tends towards the ideal one of Figurel.

3.1.2. State-space model fn (s)

There is an infinite number of possibilities to represent fn (s) by a state space model. Practically, we
have chosen the one where the state variables correspond to the outputs of the elementary cells of 4,(s) .
Let:

1+ -2

Zj(s) = —=L2,(5)

1+ —
[

(12)

J

or
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~a; 4 +2, = w;(z;4—z;) forj=1t0J (13)

with Zy (s) = 227 (s)
S

Where v(t) is the input of fn (s)and z, (¢) = x(¢) its output. The corresponding state space model is:

M, z,(t) = Az, () + B, v(t) (14)
With:
1 0 0 0 0 G, Zo
-a 1 W, — 0
M;=|0 A4,=10 o, -, B, = z,=| z
i 0 T 0 0 0 :
0 - 0 -a 1 o - 0 o -o 0 z;

3.2. Fractional integrator based on a time approach
3.2.1. Principle

Diffusive representation, used by D. Matignon [15], [11] and G. Montseny [16] provides the
theoretical basis for a time approximation of 7, (s) .

Consider a linear system such as:
x(t) = h(t)*v(2) (15)

Where A(t) is its impulse response.
Let us define the function £(®): it represents the diffusive representation (or the frequency

weighting function) of the impulse response Z(z). h(t) and u(®) verify the pseudo Laplace transform
definition [16]:

h(t) = ]O w(w)e ' dw (16)
0

A continuous frequency weighted state space model is associated to () , according to:

@ = —wz(w,1) +v(t)
. (17)
x(t) = jy(w)z(w,r)dw
0
For a fractional integration operator, it has been demonstrated [15], [16] that:
1=~ (18)
N
tn—l
with O<n<l and A(f) =
I'(n)
and
) = S (19)

3.2.2. Discrete frequency state model
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This continuous frequency weighted model is not directly usable. A practical model is obtained by

frequency discretization of 4(@) , where the function () is replaced by a multiple step function (with K
steps) (refer to Figure 2).

1w

) Wy Wy Wi W

Figure 2. Frequency discritezation of (@)

For an elementary step, its height is z(w,) , and its width is A, . Let ¢, be the weight of the k" element:
¢ = p(wp)Aay (20)

Thus, the continuous distributed model (17) becomes a conventional state model with dimension
equal to K.

G iz 0490

K
x(t) =Y @)z, (Awy for k=1.K (21)
k=1

K
= zckzk (®)
k=1

Or equivalently:

Z(1) = AZ(0)+ Bv(1)

(22)
x(6)=C"2(1)

With,
z - 0

Z(t) = Z'z , A= ,§T=[1 1 - 1],§T=[Cl cy o CK]
: 0 —og
ZK

With this approach, we obtain a discrete state-space model which is frequency distributed with the
constraints: @, > 0, @wg —> 0 et K >>1.

It is easy to transform the model (14) of 7, (s) into a modal form because the @, are known a priori.

This transformation is based on the following definition by decomposition in simple elements:
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~ c J C .
ROC N y/A (23)

s hsto;

Where ¢, and c; coefficients are linked to G,, @; and a)j by the relation:

n

CO = G}’l
@D
—w). LT
;= Gu(@,~0)) ®; (24)
@ gl
i#j .

1

This second definition of 7,(s) corresponds to a modal state model:

Z(0=4,Z(0+E v (25)
x()=C1Z ()

With:

In the frequency domain approach, the modes «; are indirectly obtained by 7,(s) in the [@,;®,]
interval, they correspond to the modes of the modal approach. The interest of this last representation is that
the modes are decoupled, which allows fast computations. Moreover, the interest of @, =0 is to reject static
error in simulation applications.

4. STATE-SPACE OF FRACTIONAL MODEL

In the context of non integer system simulation and particularly for output error identification, the
state space representation (17) of the operator is inserted in a non integer state representation describing the
system to be simulated.

Consider the following transfer function with two non integer derivative orders:

by +byis™

m

H, ()= (26)

ny+n,

ag+as™ +s

This transmittance corresponds to the fractional differential equation:
D, ., @)+ @D, (y(0))+aoy(t) = D, (u(2))+bou(t) (27)
The pseudo state-space representation of this system is:

d"x(t)
1))
dr™ 2

% — u(t) - agxy (1) - a4y (1) (28)
() = boxy (t) + byx, (1)

The global state-space representation:
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N
- B ,4 aC { : }z (29)
I

Where (4, ,E,l) and (4, ,E,z ) are matrix defining the two integrators 7, (s) and 7, (s).

Remark: (28) is the pseudo state space model of the system because x, and x, are not true state
variables.

5. OUTPUT ERROR METHOD

Next, we present a method allowing the estimation of derivative orders as well as the coefficients.

Whereas parametric estimation can be performed by a linear optimization technique in case only the
coefficients are estimated, the estimation of the derivative orders and of the coefficients requires the use of a
nonlinear programming algorithm.

The method suggested by Trigeassou, Lin and Poinot, is based on the definition of non integer
integration operator limited in frequency.

The model of the system is in continuous time representation, thus it is preferable to use an output
error technique (OE) to estimate its parameters [17].

The state-space model of the non integer system is:

{E=A@M+B@w

30
y=C" @+ DO 0
For the model #,, , (s), the parameter vector is defined by:
QT =lay @ by by m ]
The state-space model is simulated using a numerical integration algorithm, thus one gets:
3= 1w9) (31)
Where é, is an estimation of @ at iteration i.
The optimal value of QA(QM) is obtained by minimization of the quadratic criterion:
K S
Jo =2 (=5 (w.0,)) (32)
k=1
We obtain:
éi+l = éi +A0 (33)

Where A@ depends on the optimization algorithm.
We can use a black box technique such as the Matlab toolbox functions in order to minimize J_ In
this case we seek to obtain the optimal Qop, without worrying of how we reach that point. But this technique

presents some defects such as the absence of direct informations on the criterion at the optimum, thus in
particular on the precision (sensitivity of J_ in comparison with the different estimates).

To remedy this defect, we use sensitivity functions of the output. Because y(¢) is non linearin é a

Non Linear Programming technique is used to estimate iteratively éi :
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éHl = éi _{ [J;H +Al ]419} . (34)
6=6,

i

With [18], [20]:

K
Jp=-2) 60,,  Oradient
k=1

K

Jog =2 0, , : hessien
=1

A :Marquardt parameter

~ P

o 1 sensitivity function
Yo, =g ty

(35)

0.
Zi

=i

This algorithm, known as Marquardt's one [18], often used in non linear optimization, ensures a
robust convergence in spite of a bad initialization of 8. A good precision on the output sensibility functions
o,, [17], is however necessary to ensure a good convergence and precision.

6. APPLICATION
In order to compare the identification techniques of a non integer system, an illustrative example is
treated to exhibit the performances of each technique.

by +bs™

ny+n,

H, ()=
"tz ag+as™ +s

With:
a,=05,a4,=15,b=1,5=2,n=06, n,=05

The data set is composed of K data pairs {uk,y,:} with ¢ =kT, (T.: sampling period) and K=500,
T =10"s.

6.1. Identification using matlabtoolbox

a, estimation b0 estimation

0.5

a, estimation b1 estimation

80 (0] 20 40 60 80
iterations iterations

Figure 3. Identification using Matlab Toolbox
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The Curve Fitting Toolbox uses the nonlinear least squares formulation to fit a nonlinear model to
data. A nonlinear model is defined as an equation that is nonlinear in the coefficients.

Fitting requires a parametric model that relates the response data to the predictor data with one or
more coefficients. The result of the fitting process is an estimate of the model coefficients.To obtain the
coefficient estimates, the least squares method minimizes the criterion J_.It uses a predefinedfunction

“LSQNONLIN”, an implementation of the Levenberg-Marquardt algorithm, to minimize a nonlinear
function of several variables. We obtain the identification results from Figure 3.

6.2. Identification using frequency domain approach

In this section, we present the identification results on Figure 4 and performed by the frequency
approach.

This method is based on the simulation of the sensitivity functions. It gives better results than the
direct approach, but it leads to an important calculation load.

a, estimation bO estimation
i
| |
| |
[ [
| |
| |
| |
1 1
(o] 20 40 60
b1 estimation
2.5 i i
2 ~ ! ! _
| |
15 - -1 ____ [
| |
7 Y S [
| |
0.5 | !
(0] 20 40 60
n, estimation
1
i i
| |
| |
0.5 I L _
| |
| |
| |
0 | |
(0] 20 40 60
iterations iterations

Figure 4. Identification by frequency approach

Moreover, the analytical calculation of sensitivity functions can be inextricable, even unnecessarily
complex, concerning the output sensitivity of the parameter »; (with respect to the coefficients: «; #,). For

this reason we prefer now to use the modal model.

6.3. Identification using modal approach

ox(t)
n

complicated functions of n. It is possible to simplify and proceed directly the calculation of the sensitivity

functions [19], [20], [21], [22] by numerical differentiation, in the form:

The modal formulation is not adapted to the calculation of because the w, andc, are

ox(n,t) _ lim x(n+An,t)—x(n,1)

on An—0 An

(36)

A preliminary study is essential for the choice of An. In the general case, A@ is difficult to choose
because & can vary from 0 to oo . Because 0 <n <1, it is easy to find an optimal value of An, which will be
always the same. Then the calculation becomes more simple.

The simulation of the modal model is simple and powerful. This modal representation guarantees
precision and reduces calculation time. We have represented on Figure 5 the identification result using the
modal representation.
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a, estimation bO estimation

0 20 40 60
bl estimation

0 20 40 60
n, estimation
1 | |
| |
| |
0.5 T T -
f | |
| |
0 1 1
0 20 40 60
iterations iterations

Figure 5. Identification by modal approach

7. COMPARISON OF THE METHODS

The use of the Matlab toolbox as a black box technique is simple, but this technique presents some
defects such as the absence of direct informations on the criterion at the optimum and the precision.
Moreover, the convergence appears to be very slow.

The method of the fractional integrator is more complex to implement. However, it relies on a state-
space representation allowing to generalize the fundamental concepts related to ODEs.

Finally, the use of the modal representation of the fractional integrator reduces the convergence time
compared to poles/zeros approach and its programming is much simple, which is an important feature in the
context of more complex systems.

8. CONCLUSION

In this paper, we have presented and compared some techniques for the identification of fractional
systems. We have presented the output error method based on the definition of a fractional state space
representation. The modal model has confirmed the interest and the validity of this new approach for
calculation time and simplicity compared to the frequency approach and the Matlab toolbox techniques.
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