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 Electronic nose (E-nose) is a device detecting odors which is designed to resemble 
the ability of the human nose. E-nose can identifying chemical elements that 
contained in the odors. E-nose is made of arrays of gas sensor, each of it could 
detect certain chemical element. When detects gases, each sensor will generate a 
specific pattern for each gas. These patterns could be classified using neural 
network algorithm.  
Neural network is a computational method based on mathematical models which 
has the structure and operation of neural networks which imitate the human brain. 
Neural network consists of a group of neurons conected to each other with a 
connection named weight. The weights will determine wether neural networks 
could compute given inputs to produce a specified output. To generate the 
appropriate weight, the neural network needs to be trained using a number of 
gasoline and alcohol samples. 
The training process to generate appropriate weights is done by using back 
propagation algorithm on a personal computer. The appropriate weight then 
transferred to omni-directional robot equipped with e-nose. The result shows that 
the robot could identify the trained gas. 
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1. INTRODUCTION 

Nowadays, gas sensor has developed vastly, it begins for detection gas in our surrounding 
environment such us carbon dioxide, carbon monoxide, ethanol, methane and oxygen. This invention of gas 
sensor has lead to many researchers to explore and do experiment in several fields such as in medical, industry 
and military. Nowadays several gas sensors with certain specification were combined as an array sensor so that 
it could be identify some certain scent containing gasses that specified with the gas sensors. Green et al project 
to discriminating bacteria in suspension based on the scent has been done using electronic nose method [7]. 

The gas sensor usually is attached in a mobile robot and designed like human nose and it is called 
electronic nose. This project, which is to recognize object that has certain smell, have been done by Lilienthal 
et al [10], [11] in 2001 and Loutfi et al in 2005 [12], since then, application and research based on electronic 
nose attached to mobile robot become popular.  

Lilienthal et al in the research has successed to mapping gas concentration in building using mobile 
robot [9]. Zang et al designed mechanical electronic nose with the sensor arrays inside [16]. This research has 
problem that gas sensor can not detect similar gas which has similarity chemical characteristics. This problem 
can be solved using neural network algorithm.  

The previous works about mobile robot with electronic nose that using neural network have been 
done by Duckett et al [5], Farah et al [6], and Ishida et al. But their objective were to locate the odour source 
using learning algorithm to guide the robot direction. 
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In this research, neural network is used to detect several different gasses with has similarity chemical 
characteristics. However, processing neural network algorithm training stage on a robot will burden the 
processing unit in the robot. So, the training process will be done on the computer. When the appropriate 
weights are generated, those weights will be transferred to the robot. The robot’s processing unit will only need 
to compute a feed forward neural network. 
a. Neural Network 

Neural Network (NN) can be used to solve non linear and complex function. When it is used to design 
Multi-Input Single-Output (MISO) systems, NN mapp n-dimension input to single dimension output [1]. In 
field control, input usually comes from error which is difference from real outputs and set point. In this paper, 
NN has function a pattern recognition of electronic nose to identify certain gas. 

  Neuron in artificial intelligent acts as a biology nerve. Several input (x) will multiply with each 
appropriate weight (w). 
 
 

 
 

Figure 1. Neuron Model 
 
 

Then add all the result of multiplication with output from inside activation function to take single degree 
output F(x,w) [2], this process can be seen in Figure 1. 
 
ini = ∑ ௝ܹ௜ ௝ ∗ ௝ܽ                                                                                             (1) 
 

To activate each neuron in NN network need activation function such as hiperbolic function, step, 
impulse and sigmoid. Sigmoid function, like shown in Figure 2, amongs the other activation function, is closer 
with the real function of brain, so it’s often used in many research. 

 
 

 
 

Figure 2.  Activation Function  
 
 

Set of neuron can become a network which has function as computation equipment to solve problem. 
The amount of neuron and network architecture for each problem has different solution. NN architecture for 
generall can be seen in Figure 3. 

From the Figure 3, two inputs (v1 and v2) are connected to hidden layer with weight w1 until w6. 
Output from hidden layer is connected to hidden layer with weight w11 until w21. 
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Figure 3. Architecture Neural Network 
 

 
b. Gas Sensor 

Four gas sensors from Figaro Engineering Inc [17] were used in this research. They are TGS 2600, TGS 
2610, TGS 2611, and TGS 2612. Main part of TGS is a semiconductor metal oxide. TGS sensor has a 
resistance sensor that is dependent to oxygen concentration contacting directly with semiconductor metal 
oxide. The changes of potential barrier intergrain from tin oxide gas sensor can be seen in Figure 4. Figure 4 
(a) shows the changes without any chemical gas, while Figure 4 (b) shows movement when there is any 
chemical gas. Oxygen increases barrier potential level. This causes increase resistance of sensor material. If 
there is any chemical substance detected by the sensor, oxide intensity would be reduced by the concentration 
of oxygen. This situation leads the reduction of the barrier potential intergain as it is seen in Figure 4(b) and 
reduce the resistance of resistor. 

 

 
 

Figure 4. Intergrain Potential Barrier 
 
 

Relation between sensor resistant and gas concentration can be seen in Equation 2. 
 

R = A [C]-α                                                                                                                                (2) 
 
Which R is resistant sensor metal-oxide, C is gas concentratrion, A is coefficient response for some gases, and 
α is sensitivity. A and α depend on material type of sensor and temperature sensor. 

Sensor TGS has two main parts; first part is tin oxide (SnO2) as sensor material. This material is 
connected to pin 2 and 3. Second part is the heater for heating sensor material. This heater is connected to pin 1 
and 4. Figure 5 show the structur of gas sensor TGS 26XX.  

 

 
 

Figure 5. TGS Sensor Structure 
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Schematic for Sensor TGS can be seen in Figure 6. Sensor TGS needs supply circuit (Vc) and also heater 
which has input power (VH) respectively in pin 1 and pin 4. A load is connected to pin 2. This load will be 
used as concentration measurement of gas which is in. 
 
 

 
 

Figure 6. TGS Schematic 
 
 

c. Omni-directional Robot 
Omni-directional robot is a robot with a steering system which could move in all direction. This 

steering system is using omni directional poly roller wheel (omni-wheel). Figure 7 shows that robot with omni-
wheel could perform a complex movements to reach a specific position. This steering system enables the robot 
to moving in x and y axis, so it has two degree of freedom (DoF). Usually, there are omni-directional robot’s 
that using 3 or 4 omni-wheels. The configuration of these omni-wheels position on the robot will affect robot’s 
movements significantly. The farther the distance of front and rear wheels, the faster the robot could rotate. 

 

 

(a)    (b) 
 

Figure 7. Difference between the (a) standard and (b) omni-directional wheel’s movement 
 
 

Since research done by Dickerson et al [4] in 1991 about omni-directional robot using mecanum 
wheels, there have been many research group that developing an omni-directional robot like Mori et al [14] 
that are studying about the mechanism and the running modes of the omni-directional robot. 

 

 

Figure 8. Omni-directional robot 
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(a) 

 
(b) 

 
Figure 11. Output of Gas Sensors (a) gasoline (b) alcohol 

 
 

3.2.  Neural network training 
The target output of neural network was able to recognize the gasses tested. The target of the neural 

network can be seen in Table 1. 
 
 

Table 1. Neural network target 

Jenis Gas 
Target 

n1 n2 n3 
Gasoline 1 0 0 
Alcohol 0 1 0 
Other 0 0 1 

 
 

All the 30 data from gas sensor were used to search weight (w) and bias (b). Weight and bias were 
obtained by entering data training and target in training program, the process to get the weights and bias was 
shown in Figure 12. The training process parameters used were learning rate (µ) = 0.1, least error = 0.0001 
ሺ10ିସሻ, and max iteration = 1,000,000,000 ሺ10ଽሻ. The training process was convergence at 781,338,964 
iteration with error (SSE) value = 9.99989696745863E-05. The weight and bias trained then were tested using 
data trained and new data. 

 
 

 
 

Figure 12. Training weight and bias process  
 
 

3.3.  Identification result 
The identification results shown in Table 2. It shows that the success percentage for defined gas, 

gasoline in experiments 1 – 10 and alcohol ini experimetns 11–20, is 100% each, but when it is tested with 
other odor gasses, such as air, smoke, methan, etc., like in experiments 21–30, the percentage success rate is 
down to 70%. So the global success rate is 90% for the trained gasses.  
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Table 2. Identification Result 
No Tested Gas Gas Identified No Tested Gas Gas Identified No Tested Gas Gas Identified 

1 Gasoline Gasoline 11 Alcohol Alcohol 21 Other Alcohol 

2 Gasoline Gasoline 12 Alcohol Alcohol 22 Other Other 

3 Gasoline Gasoline 13 Alcohol Alcohol 23 Other Alcohol 

4 Gasoline Gasoline 14 Alcohol Alcohol 24 Other Gasoline 

5 Gasoline Gasoline 15 Alcohol Alcohol 25 Other Other 

6 Gasoline Gasoline 16 Alcohol Alcohol 26 Other Other 

7 Gasoline Gasoline 17 Alcohol Alcohol 27 Other Other 

8 Gasoline Gasoline 18 Alcohol Alcohol 28 Other Other 

9 Gasoline Gasoline 19 Alcohol Alcohol 29 Other Other 

10 Gasoline Gasoline 20 Alcohol Alcohol 30 Other Other 

 
 

4. CONCLUSION 
The neural network implemented on omni-directional robot is successfully identify determined gasses 

such as gasoline and alcohol with success rate 100%, but when it is tested with other gasses which is not 
trained, the success rate is down to 70%. It might be because there were no sample to those other gas that is 
failed to tested, so the neural network is being confused to determine which class is those gasses. 
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