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 The effects of residual dispersion on intra-channel cross-phase modulation 
(IXPM) induced phase perturbation in optical RZ pulse propagating in a 
periodically dispersion managed (DM) transmission line are investigated in 
this work. Using perturbed variational formulation, we have obtained several 
ordinary differential equations for various pulse parameters. These equations 
have been solved to identify phase perturbation in the DM cell of the system. 
Full numerical simulation of the nonlinear Schrodinger equation has been 
employed to identify effects of phase fluctuation on pulse propagation and to 
investigate the intra-pulse interaction. The analytical result is verified by 
numerical simulation based on split-step Fourier method (SSFM). We 
therefore explore the effects of various parameters such as transmission 
distance, input power, duty cycle, and bit-rate on phase fluctuation for 
different transmission models having different residual dispersion. 
Simulation results confirm significant improvement in the phase fluctuations 
due to IXPM by using dispersion managed line having some residual 
dispersion compared to perfect dispersion compensation. The outcome of our 
work is to explore the performance of the DM system with respect to some 
residual dispersion so that the IXPM induced phase fluctuations remain low 
in optical fiber communication. 
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1. INTRODUCTION 

Dispersion management (variation of the chromatic dispersion along the line) is an attractive technique 
that can be used to enhance the performance of fiber communication links both for soliton and non-soliton 
transmission. Dispersion managed (DM) systems have shown great opportunity in long distance high speed optical 
fiber communication systems because of their superb characteristics which are not achievable in conventional 
systems [1]-[3]. Indeed the main limitation of high-bit rate transmission in optical fiber links is the chromatic 
dispersion. Other limitations are fiber loss, radiation from the pulse due to lumped amplifiers compensating the 
fiber loss, noise and other nonlinear effects. One of the solutions to compensate for the pulse broadening induced 
by dispersion is a direct dispersion compensation for linear pulse propagation [4]. In a dispersion-managed system, 
fiber dispersion varies alternately between anomalous and normal values. This variation is maintained periodically 
and the average dispersion over a period could be positive, negative or even zero [5]-[6]. A dispersion managed 
optical communication system is made of alternate segments of normal (positive) and anomalous (negative) 
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dispersion fiber in a periodic manner. The combination of fiber segments with alternating normal and anomalous 
dispersions makes a unit cell of a DM link. Thus, in a unit cell, fiber dispersion becomes locally high, but the 
average dispersion of a cell remains low. It has been also established that an intra-pulse interaction can be 
minimized by choosing a dispersion profile and a fiber length alternating between normal and anomalous 
dispersions. However in any realistic optical network it is not possible every time to compensate all the dispersion 
in each segment. As a result there remains some residual dispersion in a dispersion managed system.  

In particular, in standard single mode fiber (SSMF) the high local dispersion leads to rapid pulse 
broadening over several bit slots, and the overlapping neighboring pulses interact through intra-channel cross 
phase modulation (IXPM) and intra-channel  four wave mixing (IFWM) in a single channel system [8]. Recently 
IXPM has drawn considerable attention as phase- modulated formats are going to be implemented in near future 
for optical fiber communication. IXPM is caused by the modulation of a pulse phase by nonlinear interaction with 
neighboring pulses within the channel. It was shown that the pulse propagation in such conditions was described 
by the nonlinear Schrodinger equation with a distance-varying dispersion coefficient [7]. However, the analyses of 
phase fluctuations due to IXPM in phase modulated signal and their impact on fiber-optic transmission system has 
yet to be address completely. Recently some research on IXPM have been conducting [9]-[11] but the basic study 
with overall performance analyses due to IXPM distortion are still under research. Most of the researches did not 
consider the aspect of residual dispersion and its effects on intra-channel cross-phase modulation induced phase 
fluctuation. 

This research work is intended to explore the influence of residual dispersion on IXPM induced phase 
fluctuation of RZ pulse in three different DM models having different residual dispersion. We have analyzed the 
phase shift induced by IXPM by using variational analysis [12]. Several dynamical equations are obtained for 
various pulse parameters. The phase fluctuation is calculated by solving these equations using Runge-Kutta 
method. Furthermore, we show the effect of various parameters on phase perturbation and therefore analyze the 
performance of the DM system with respect to random fluctuations of the dispersion. Finally split step Fourier 
method (SSMF) is used in some cases to validate the analytical results. This paper is organized as follows: 
variational analysis presuming IXPM as a perturbation has been presented in section 2. Section 3 gives the system 
description of different transmission models. The simulation results for different models have been highlighted in 
Section 4 stating the significance of various parameters that could affect IXPM. Finally the summary of work is 
stated in Section 5. 

 
 

2. PROPOSED ALGORITHM 
The dynamics of optical pulses in a dispersion managed optical communication system is governed by 

the modified nonlinear Schrodinger equation (MNLSE): 
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Where U (Z, T), b(z), S(z), T and Z represent normalized envelop of electric field, dispersion 

parameter, nonlinear coefficients, normalized retarded time and propagation distance respectively. We assume 
that

 
Aj, pj , Cj, κj, τj and θj  represent the j-th pulse’s amplitude, reciprocal of pulse width, linear chirp, central 

frequency, central time position and the phase of the pulse, respectively. Then the solution of Equation (1) can 
be approximated by a Gaussian pulse which is associated with linear chirp as: 
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The dynamical equations with perturbation can be written for two pulses (j = 1, 2) as: 
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   which represents constant pulse energy of 

Uj, Equation (2)–(6) can be deduced as: 
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Figure 2.  Single Pulse dynamics within the DM 
system with full numerical simulation 

Figure 3.  Phase fluctuation against transmission 
distance for different residual dispersion. 

 
 
First we have focused our attention to the effects of residual dispersion on IXPM induced phase 

fluctuation with respect to transmission distance. Figure 3 shows maximum phase fluctuation versus 
transmission distance for three types of DM Models both analytically and numerically for 1000km 
propagation. The simulation is done at 40% duty cycle with a peak power of 1mW. Phase fluctuation increases 
linearly with the transmission distance which is shown in Figure 3. It is evident from the figure that different 
models give different amount of phase shift. But Model (B) and Model (C) have shown better performance 
compared to Model (A). The disagreement between the theoretical predictions and the numerical values are 
quite negligible.  

Figure 4 depicts the phase shift behavior with initial peak power. In this section we have varied peak 
power and plotted the IXPM induced phase perturbation for all three models. It shows phase fluctuation is 
sensitive to residual dispersion. Every model experiences higher phase shift with greater input power. We 
notice Model (B) and Model (C) gives almost the similar result.  Like the previous case Model (A) shows 
higher phase fluctuation. 

 

Figure 4. Phase perturbation is plotted as a function of 
initial peak power 

Figure  5. Effect of duty cycle on IXPM induced 
phase fluctuation for three models 

 
 
Figure 5 illustrates the behavior of IXPM induced phase fluctuation with the change of duty cycle d 

for 40 Gb/s system with a peak power of 1mW. We can see from Figure 5 when duty cycle d << 1, no pulses 
overlap and the phase shift is less for all three models. As duty cycle d is increased, pulse broadens and the 
phase shift increases. Here the effect of IXPM depends on two factors: the level of pulse overlap and the 
intensity derivative in this context means the first derivative of pulse intensity. As interacting pulses are 
dispersed during propagation, their intensity derivatives are decreased while the pulse overlap region is 
increased. Therefore, when pulses strongly overlap each other, the intensity derivative of the pulses involved in 
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the IXPM process is small due to the pulses being severely dispersed. On the other hand, the intensity 
derivative of the pulses is strong when the pulse overlap is small (d<<1). Hence, the IXPM is strongest when 
pulses partially overlap (d ≈1) due to the compromise between the intensity derivatives of the interacting 
pulses and the level of overlap. Again we can say the models with some normal or anomalous residual 
dispersion show better performances. 

Next we investigate the effect of bit rate on phase perturbation for 1000km propagation in Fig. 6. The 
system is operated at 50% duty cycle with a peak power of 2mW. The influence of IXPM is dominant at bit 
rate 40Gb/s and above. A continuous increase in phase shift is observed with increasing bit rate because pulse-
to-pulse interaction increases with higher bit rates. Like the previous case Model (B) and Model (C) show 
lower phase fluctuation and their performance is comparable. 

 

 
 

Figure 6.  IXPM induced Phase fluctuation as a 
function of bit rate for three models

Figure 7. Phase shift versus residual dispersion per 
span for dispersion managed system 

 
 
In Figure 7 we will check the impact of different normal and anomalous residual dispersion on IXPM 

induced phase fluctuation for a dispersion managed system. The amount of residual dispersion is varied up to ±25 
ps/nm by changing the fiber length of DCF with a peak power of 1mW and 40% duty cycle. This result also 
suggests that some amount of positive or negative residual dispersion could be effective to suppress IXPM.  

Finally we can say maintaining some residual dispersion is better than perfect dispersion compensation in 
order to obtain low phase fluctuation which is evident from above results. 

 
 

5. CONCLUSION  
In this paper impact of different residual dispersion on IXPM induced phase fluctuation has been 

investigated for long-haul fiber-optic transmission systems. The analytical model is based on variational 
method and we have obtained several ordinary differential equations for various pulse parameters. These 
equations have been solved by Runge-Kutta method to identify launching criteria of the system and its 
dynamical behavior in the nonlinear medium is also numerically simulated using the spilt-step Fourier method.  
Next nonlinear phase perturbation is ascertained for three different models with taking into account of the 
effects of IXPM only. We have considered the perfect dispersion compensation at the end of each period, i.e., 
there is no residual dispersion at the receiver end for Model (A). We have also considered two different models 
Model (B) and Model (C) considering positive and negative residual dispersion respectively. The influences of 
various parameters (such as transmission distance, input power, and duty cycle and bit rate) on IXPM induced 
phase shift have been explored for all models. It is clear from all results that a small amount of positive or 
negative residual dispersion offer lower phase fluctuation compared to perfect dispersion compensation. It can 
be said that residual dispersion per span will be beneficial to reduce nonlinear phase perturbation and a small 
anomalous residual dispersion is necessary to improve the transmission performance. Further DM modeling 
could be checked to attain lower IXPM-induced phase shift. Fiber Bragg gratings can also be considered for 
DM system instead of DCF. In order to obtain a complete real picture, experimental investigation can be done 
taking the combined effect of all other major effects including ASE noise, IFWM, stimulated Raman scattering 
and amplifier noise. 
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