
International Journal of Electrical and Computer Engineering (IJECE) 
Vol. 3, No. 3, June 2013, pp. 344~358 
ISSN: 2088-8708  344 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

Non Integer Identification of Rotor Skin Effect in Induction 
Machines  

 
 

Abdelhamid JALLOUL*, Khaled JELASSI*, Jean-Claude TRIGEASSOU**  
* National Engineering School, Electrical Systems Laboratory (LSE), Tunis, Tunisia  

** Laboratoire Intégration du Matériau au Système (IMS-LAPS), UMR  5218, Université Bordeaux 1, France  
 
 

Article Info  ABSTRACT

Article history: 

Received Feb 27, 2013 
Revised Apr 10, 2013 
Accepted May 23, 2013 

 Fractional identification of rotor skin effect in induction machines is 
presented in this paper. Park‘s transformation is used to obtain a system of 
differential equations which allows to include the skin effect in the rotor bars 
of asynchronous machines. A transfer function with a fractional derivative 
order has been selected to represent the admittance of the bar by the help of a 
non integer integrator which is approximated by a J+1 dimensional modal 
system. The machine parameters are estimated by an output-error technique 
using a non linear iterative optimization algorithm. Experimental results 
show the performance of the modal approach for modeling and identification. 
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1. INTRODUCTION  

Accurate modeling of electrical machines is very important for the designer of the machine, facing 
its improvement. On the other hand, the knowledge of parameters is necessary to realize realistic simulations 
of the machines and is important for the operator of modern drives who implements control systems.  

Moreover, in the case of the association of a static converter to an electrical machine, the rational 
use of the whole passes by a perfect control of the global dynamic behavior. With PWM power supplies, the 
electrical machines have to work on a very large frequency range. Thus, the representation of this machine by 
a simplified model, only valid on a limited frequency range, is the source of unsatisfactory results.  

The insufficiency of these models is more accentuated when the electrical machines have a massive 
structure (like asynchronous machines with cages, deep notches or massive rotor) characterized by skin effect 
(or frequency effect). 

Induction currents in the rotor bars are governed by a diffusive phenomenon. At low frequencies, 
currents have a density which is uniform and equal everywhere over the entire cross sectional area. If the 
frequency is high enough, current density tends to be higher at the surface of the bar. The higher the 
frequency, the greater the tendency for this effect to occur. This phenomenon is called «skin effect» in rotor 
bars, or «frequency effect» more generally. 

There are three possible reasons we might care about skin effect [1]:  
1. The skin effect causes the effective cross sectional area to decrease. Therefore, the skin effect causes the 
effective resistance of the conductor to increase.  
2. The skin effect is a function of frequency. Therefore, the skin effect causes the resistance of a conductor to 
become a function of frequency.  
3. If the skin effect causes the effective cross sectional area of a bar to decrease and its resistance to increase, 
then the bar will heat faster and to a higher temperature at higher frequencies for the same level of current. 
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In electrical engineering, this phenomenon is particularly important in massive rotor or squirrel-cage 
induction motors. Its diffusive character leads to notice a strong modification of the impedance (both 
resistance and reactance) according to the frequency [2]. It is thus interesting to use a transfer function with a 
fractional derivative order to represent the admittance of the bar on a broad frequency scale, like it has been 
demonstrated in a recent paper [13]. 

In the context of parameter estimation of the admittance, the derivative orders should be estimated 
in the same way that the other coefficients. Based on the output error method, the models used are non linear 
in the parameters and optimization algorithms involve non linear programming (NLP) 

In this paper, we propose to identify the parameters of the asynchronous machine model taking into 
account the fractional feature of the rotor model and estimating its parameters using an output error 
identification technique. 

After a reminder of definitions related to fractional integration operators in parts 2 and 3, the Park’s 
model of asynchronous machines with fractional impedance is presented in parts 4. Part 5 is devoted to 
present the output error method. We propose, in part 6 experimental results of fractional identification for 
parameter estimation.  
 
 
2. FRACTIONAL DIFFERENTIATION AND INTEGRATION 

Fractional integration is defined by the Riemann-Liouville Integral [6], [20]-[22]. The nth order 
integral ( n real positive) of the function )(tf  is defined by the relation: 
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))(( tfI n is interpreted as the convolution [20] of the function )(tf  with the impulse response: 
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Fractional differentiation is the dual operation of the fractional integration. Consider the fractional integration 
operator )(sI n  whose input/output are respectively x(t) and y(t). Then: 
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3. FRACTIONAL INTEGRATION OPERATORS 
The fractional integration operator )(sIn  is the key element for FDE simulation. However, the 

realization of )(sIn  is not a simple problem as in the integer order case. It is possible to consider the 

frequency and modal approaches. Our objective is to compare the impact of these approaches for the 
simulation and the identification of the asynchronous machine. 
 
3.1.  Frequency Approach Synthesis 
3.1.1. Principle 

Let us consider the Bode plots of a fractional integrator truncated in low and high frequencies 
(Figure 1) [3]-[5]. 
 

 
 

Figure 1. Bode diagram of the fractional integrator 
 
 

It is composed of three parts. The intermediary part corresponds to non-integer action, characterized 
by the order n. In the two other parts, the integrator has a conventional action, characterized by its order equal 

to 1. In this way, the operator )(
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sIn  is defined as a conventional integrator, except in a limited band ];[ hb ww  

where it acts like ns  . The operator )(
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sIn  is defined using a fractional phase-lead filter [6] and an integrator
ns  . 
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The coefficient Gn is a normalized factor, such as )(
~

sIn  and )(sIn  are identical on ];[ hb ww . This operator 

is completely defined by the following relations [6]: 
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  and   are recursive parameters related to the non integer order n. When J is sufficiently large, the bode 

diagram of )(
~

sIn tends towards the ideal one of Figure 1. 

 

3.1.2. State space model of )(
~

sIn  

It is convenient to associate a state-space representation to )(
~

sIn  in order to simulate fractional 

systems. There is an infinite number of possibilities to represent )(
~

sIn by a state space model. Practically, we 

have chosen the one where the state variables  correspond  to  the  outputs  of the  elementary  cells of )(
~

sIn . 
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Because one of our objectives is to estimate the parameters we have privileged parsimonious models 

in order to facilitate the identification procedure [4], [7]. Other approximations can be used and bring 
improvements to simplify the calculations of the frequency domain approach, like the modal approach. 
 
3.2.  Modal Approach 
3.2.1. Frequency distributed model 

The fractional order integrator is a linear system such as: 
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This system can be represented by a frequency distributed model; it is also known as a diffusive model (refer 
to appendix 1 and [8]-[10]):   
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)(w  is called frequency weighting function. 
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3.2.2. Frequency discretized distributed model 
This continuous frequency weighted model is not directly usable. A practical model (necessary for 

simulation applications) is obtained by frequency discretization of  )(w , where the function )(w  is 

replaced by a multiple step function (with K steps). For an elementary step, its height is )( kw , and its width 

is kw . Let 
kc  be the weight of the kth  element:  

 

kkk wwc  )(                                                                           (20) 

 

                                     

Figure 2. Frequency discretization of )(w  
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)(        

)()()(

.1   );()(

1

1

txc

wtxwty

K..ktutxw
dt

dx

K

k
kk

kk

K

k
k

kk
k


                                                  (21) 

 
or equivalently: 
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With this approach, we obtain a discrete state-space model which is frequency distributed with the 
constraints: 
 

01 w ,  and  

 
3.3.  Comparison with Frequency Model 

It is easy to transform the model (14) of )(sIn  into a modal form because the jw  are known a 

priori. This transformation is based on the following decomposition in simple elements: 
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Where 
0c  and 

jc  coefficients are linked to
nG , jw  and '

jw  by the relations: 
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This second definition of )(
~

sIn  corresponds to a modal state model: 
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In the frequency domain approach, the modes jw  are indirectly obtained by )(
~

sIn  in the  hb ww ;  

interval, they correspond to the modes of the modal approach. The interest of this last representation is that 
the modes are decoupled, which allows fast computations. Moreover, an important interest of 00 w  is to 

reject static error in simulation applications. 
 
 
4. PARK’S MODEL OF INDUCTION MACHINE  

The most important assumptions to derive the Park’s model are: 
1. The air gap between the stator magnetic structure and the rotor magnetic structure is uniform. All 

magnetic variations due to slots are neglected. 
2. The magnetic field is assumed to have a sinusoidal spatial distribution. 
3. The stator and rotor windings axes coincide with the magnetic axes of the phases. 
4. The permeability of the iron is infinite.  

The Park’s transformation establishes an equivalence between a three-phase representation and rotor 
reference frame. The conventional equivalent diagram [11] of Park’s model is represented on Figure 4 : 

 
 

 
Figure 3. Conventional equivalent diagram of Park’s model 

 
 
With: 

sR  and rR  representing the resistance of the stator and the resistance of the rotor bars respectively.   is the 

rotor speed, rl  are the stator and rotor leakage inductances, mL  the magnetizing inductance. 
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4.1. Ladder Model 
To take into account skin effect in rotor bars, the assumption is made that each equivalent rotor 

winding is composed of K slices in parallel. The Park’s equivalent diagram with ladder model (refer to [12] 
and [13] for more details)  is represented on Figure 5. 

 
 

 
Figure 4. Park’s ladder model 

 
 

kl  represents the linkage inductance of each elementary slice. 

A complex notation is used: 
 

Xjxx qd                                                                             (27) 

 
The mathematical model of squirrel cage induction motor can be written as: 
 




























K

k
rkrsmr

rsmsss

rrr

sssss

k
IlIIL

IILIl
dt

d
IR

j
dt

d
IRU

1

)(

)(

0









                                                        (28) 

There are several expressions that can describe the developed electromechanical torque of an 
induction machine [11], [13], we prefer to use the following because it refers only to stator variables:  

 
                                                                   (29) 

 
4.2.  Induction machine equivalence with fractional impedance 

Using equivalence between a ladder network and fractional impedance [13], one can define the 
Park’s fractional model of the induction machine: 

  

 
Figure 5. Park’s fractional model 

 
 

The equations describing electromagnetic processes in induction machine (including a squirrel-cage 
rotor) are as follows: 
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We define the magnetizing flux 
m
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We can write:  
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Which corresponds to the fractional order differential equation: 
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we obtain a differential system allowing the simulation of the asynchronous machine: 
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The mechanical expression of the rotor speed is obtained thanks to the relation: 
 

fCC
dt

d
J rem                                                                       (37) 

 

emC  is expressed in (29), J : moment of inertia  

f : friction coefficient 

 
 
5. OUTPUT ERROR IDENTIFICATION  

Next, we remind the principle of a method allowing the estimation of the parameters of the Park 
model of induction machine with fractional impedance (36).  

Whereas parametric estimation can be performed by a linear optimization technique in case [14] the 
model is linear in the parameters, the estimation of the derivative orders and of the coefficients requires the 
use of a nonlinear programming algorithm. 

The method suggested by Trigeassou, Lin and Poinot [3], [7], is based on the definition of a non 
integer integration operator limited in frequency (frequency approach). 

The model of the system is in continuous time representation and we use an output error technique 
(OE) to estimate its parameters [15], [16]. 

For the fractional state-space model of the induction machine, the parameter vector is defined by: 
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The state-space model is simulated using a numerical integration algorithm, thus one gets: 
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Where î  is an estimation of   at iteration i. 

The optimal value of )(ˆ opt  is obtained by minimization of the quadratic criterion: 
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we obtain: 
 

  ii
ˆˆ

1                                                                              (41) 

 

Where   depends on the optimization algorithm. 

We can use a black box technique provided by the Matlab toolbox functions in order to minimize J . 
In this case we want to obtain the optimal opt  without worrying of how we obtain this estimate. But this 

technique presents some drawbacks such as the absence of direct informations on the criterion at the 
optimum, thus in particular on the precision (sensitivity of  with regard to the different estimates). 
To remedy these drawbacks, we use sensitivity functions of the simulated output [15], [16]. 

Because )(ˆ tI s  is non linear in ̂ , a Non Linear Programming technique is used to estimate 

iteratively î : 
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With [15], [ 16]: 
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This algorithm, known as Marquardt's one [17], often used in non linear optimization, ensures 

robust convergence in spite of a bad initialization of ̂ . A good precision of the output sensibility functions 

ik  ,  is however necessary to ensure a good convergence and precision of the algorithm. 

 
 
6. EXPERIMENTAL IDENTIFICATION  

In order to appreciate the interest of the Park fractional model with the modal representation of the 
fractional integrator, we use this method to identify three possible models, using input/output data provided 
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J is the quadratic criterion which is minimized according to the output error technique (see [3], [5] 
and [18] for more details). 

The parameters with the conventional Park’s model are defined by:  ]      [ rmrs
T llRR  

 

 
 

Figure 6. Measured and estimated currents with 
conventional model 

Figure 7. Parameter estimation with conventional 
model 

 
 

6.2.  Identification of the Fractional Model Hn (s) 

The modal formulation is not adapted to the exact calculation of 
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functions [15], [16], [19] by numerical differentiation, in the form:   
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A preliminary study is essential for the choice of n . In the general case,  is difficult to choose 
because  can vary from -  to  . Because 10  n , it is easy to find an optimal value of n , which will 
be always the same. Then the calculation becomes more simple. The parameters with the fractional model 

 are defined by: ]        [ 00 nbalR ms
T  . 

As exhibited by Figure 6 and 8, there is a good fit between measured and estimated currents with 
both conventional and fractional  models. 

 

 
Figure 8. Measured and estimated currents with 
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Figure 9. Parameter estimation with fractional model 
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In order to appreciate the improvement of nH  model, it is necessary to compare the respective 

quadratic criterions (see Table 1). It is obvious that the fractional model provides a better approximation of 
measurements than the conventional Park’s model. 
 
6.3.  Identification of the Fractional Model Hn1,n2(s) 

The model (36) gives a good approximation only at low and medium frequencies [18]. In order to 
improve the fractional model (36) and particularly its high frequency approximation, a second model is 
proposed. 
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The parameters of the fractional model 
21,nnH  are defined by:  ]            [ 11010 nbbaalR ms

T  . Because 2n  is 

set equal to 0.5, it is only necessary to estimate 1n . 

As previously, there is a good fit between measured and estimated currents demonstrated by Figure 
10. The Figure 7, 9 and 11 represent the parameters variation during the identification. The corresponding 
quadratic criterions of Table 1 indicate that (s)H ,nn 21

 performs a better approximation than the other models. 

We present in the following table all the results of experimental parameter estimation. 
 

Figure 10. Measured and estimated currents with 
fractional model  

Figure 11. Parameter estimation with fractional 
model 
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7. CONCLUSION  
In this paper, we have presented and compared some models for the identification of rotor skin 

effect in induction machines. 
Thanks to Park’s transformation we have obtained a conventional model in reference frame (dq) 

related to rotor. To take into account the diffusive phenomena of the skin effect, the Park’s equivalent 
diagram with ladder model has been proposed. Then, we have replaced the ladder model by a fractional 
impedance. 

The identification of the Park model with a fractional impedance has been performed by the output 
error method. Fundamentally, this method is based on the simulation of the model (and of sensitivity 
functions).  

We have used the modal approach to compare three models with experimental data. The results 
show clearly that the fractional models give better approximations than the conventional Park model.  

Moreover, we have shown that a new fractional model with two derivatives is able to improve these 
experimental approximations. 
 
 
 
APPENDIX 
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We use the Bromwich contour shown in Figure 12. 
 

 
 

Fig.12. Bromwitch contour C 
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Refering to Cauchy’s theorem:  
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then: 
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Finally we evaluate the integrals along the paths EH and KL. Along EH, 
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Along KL, 
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We thus obtain: 
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and finally: 
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Because x corresponds to a frequency, let us define . 

Notice that  is the impulse response  

of   when its input is . 

Thus, in a more general situation, the response  of the elementary system to an input  

verifies the differential equation: 
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                                                             (A.13) 

 
and the output  of the fractional system is the weighted integral (with weight ) of all the 

contributions  ranging from 0 to : 
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with  10  n  
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