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 Recommendation systems are gaining great importance with e-Learning and 
multimedia on the internet. It fails in some situations such as new-user 
profile (cold-start) issue. To overcome this issue, we propose a novel goal-
based hybrid approach for user-to-user personalized similarity recommend-
ation and present its performance accuracy. This work also helps to improve 
collaborative filtering using k-nearest neighbor as neighborhood 
collaborative filtering (NCF) and content-based filtering as content-based 
collaborative filtering (CBCF). The purpose of combining k-nn with 
recommendation approaches is to increase the relevant recommendation 
accuracy and decrease the new-user profile (cold-start) issue. The proposed 
goal-based approach associated with nearest neighbors, compare 
personalized profile preferences and get the similarities between users. The 
paper discussed research architecture, working of proposed goal-based 
approach, its experimental steps and initial results. 
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1. INTRODUCTION 

Recommender systems are proposed as a promising solution to deal with these issues. Two main 
techniques are used in hybrid approach recommender systems. Content-based filtering  techniques [1], [2] in 
which the user will be recommended items similar to those the user preferred in the past, and collaborative 
filtering techniques [3] in which the user will be recommended items that the other users similar in tastes 
liked in the past [4]. Each technique has some limitations when it is taken individually such as data sparsity, 
new-item profile (cold-start) and new-user profile (cold-start) problems. Cold-start (new-user profile) is an 
issue in hybrid personalized recommendation systems [5]. In cold-start, the system gives poor 
recommendation and damages the resulting filtering learning content accuracy of recommender systems [6]. 
In recent research, there are two types of profiles working in e-Learning recommender systems: one is user- 
profile and second is item-profile [7]. The proposed research work is on improving the user-profile cold-start 
problem. User profile cold-start problem occurs when the user is new in the recommender system 
environment and does not have related information in the personalized profile. Users should have user 
interests, required goals, rating/grading and likes/dislikes, learning contents details, etc, in the profile [8]. 
Unless the system is unable to acclaim the users required goal/ interests and cannot recommend the required 
item/ content more closely related to user interest. 

In addressing the new-item profile (cold-start) problem; Li and B.M.Kim [9], [10] used item-based 
collaborative filtering. The clustering results merge the content information into the collaborative filtering in 
order to solve the cold start problem. However, the Li and B.M.Kim [9], [10] approach ignores the 
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demographic information of users which can be helpful to improve the prediction results. The new-user 
profile (cold-start) occurrs in both content-based and collaborative filtering recommender systems. For 
example: Imran Ghani et al. [2] proposed domain-based filtering approach which works on content-based 
algorithm to overcome the new-user profile (cold-start) issue. S.Spiegel et al. [11], A.Gunawardana and 
C.Meek [12] and P.Melville et al. [13] proposed their works with both content-based and collaborative 
filtering to address and improve the issue of new-user profile (cold-start). The authors incorporated the rating 
data as well as the content information in a unified model. They demonstrated that mixing features of users 
and items achieves good accuracy. Nevertheless, non of them exploited all the users and items features like 
the address and rating  time,  and  they did not  indicate  how  their  approach  deals  with  the cold start issue. 

Researchers now adays recommend the use of more than two approaches (partially used machine 
learning) to reduce the effects of new-user profile (cold-start) issue. One of them, M.J.Pazzani [14]  proposed 
a framework that combines collaborative, content-based and demographic filtering for recommending 
information from HTML pages to gather the demographic information of users. The weak point is the author 
tested his approach with minimum number of users’ and items’ dataset which cannot guarantee the efficiency 
of the proposed system with huge dataset. Moreover, M.J.Pazzani [14] did not provide explanation on how 
the model is built. M. Lee et al. [15] proposed a collaborative filtering recommender system combined with 
the SOM Neural Network. They categorized the users based on their demographic information, and used a 
clustering technique to cluster the users in each category according to their preference to items using the 
SOM Neural Network. M. Jahrer et al. [16] used several approaches such as SVD (Singular Value 
Decomposition), Neighborhood Based Approaches [17], Restricted Boltzmann Machine, Asymmetric Factor  
Model and Global Effects to build recommender systems. The authors show that linearly combining these 
algorithms increases the accuracy of prediction. In addition, the use of all these models leads to significant 
increase in training time complexity and data sparsity issues. Other works on hybrid recommender systems 
can be found in [18] where the researchers proposed different filtering recommendation techniques in order 
to provide more relevant predictions/ recommend-ations and overcome/reduce the limitations of each 
technique. 

In this paper we propose a novel hybrid approach to build a recommender system. Our approach 
combines neighborhood collaborative filtering (NCF) using k-nearest neighbor network and content-based 
collaborative filtering (CBCF) using collaborative filtering techniques to improve the new-user cold-start 
profile content filtering accuracy. This method allows a better coverage, and overcomes the cold-start profile 
filtering accuracy issue. The new-profile attributes (e.g. gender, age, occupation, etc.) are used for clustering 
the similarities between users personalized profile preferences. The method is categorizing the users into 
categories (clusters) using a nearest neighbor technique. Each category holds users sharing similar user 
profile characteristics. For a new user, the technique recommendes items using only the cluster to which this 
user belongs. In the same way, the combination of user-profile content characteristics and content-based 
filtering technique helps to solve the problem of new-user profiling by adding details in the system. The 
contributions of this study are (a) establishing the new and existing user profile similarities using 
neighborhood collaborative filtering (NCF); (b) recommendation of required goals to the user using content-
based collaborative filtering (CBCF) and (c) the goal-based hybrid approach, improves the performance of 
recommender systems with new-learner cold-start profile automatically. 

 
 

2. RESEARCH ARCHITECTUR AND METHODOLOGY 
The challenge of this novel goal-based hybrid approach based recommender system is improving 

new-user cold-start profile content filtering accuracy [19], [20]. Figure 1: shows the architectural model of 
our proposed hybrid filtering recommender system. In this section we discuss our proposed architectural 
model. 

 
 
 
 

 
 
 
 
 
 
 

Figure 1. Architectural model of goal-based filtering hybrid recommender system 

 

  Goal-based hybrid filtering 

Neighborhood Collaborative Filtering (KNN+CF) 5 

Content-based Collaborative Filtering (CF+CBF) 6 

Recommendation 

Recommended Item/Content 

Data Collection 

Users Profile  
Collection 

1 

Dataset Content 
Collection 

2

List of Users 
recommended 

Goals 3

List of 
recommended 
Users Profiles 4



IJECE ISSN: 2088-8708  
 

Goal-based Hybrid Filtering for User-to-user Personalized... (Muhammad Waseem Chughtai) 

331

In user profile collection, the proposed hybrid approach incorporates the users’ profiles content. 
First, the system collects a set of users’ ܷ profiles ܷ ൌ ሼݑଵ, ,ଶݑ ,ଷݑ … ,  ሽ to compute each individual userݑ
profile with different user’s profiles collaboratively to overcome the new-user profile cold-start problem. The 
dataset content collection collects the items/contents I from the provided dataset. The item/content collection 
set ܫ ൌ ሼ݅ଵ, ݅ଶ, ݅ଷ, … , ݅ሽ is used as an ሾܰ ൈ  ሿ matrix, where n is total number of users and m is total numberܯ
of items/contents used in users ܷ and items’ I. The list of users recommended goals collects the users 
existing recommended items that have been sorted as ܴ௨ ൌ ൛݅ݑଵ, ,ଶ݅ݑ ,ଷ݅ݑ … ,  ൟ. Here user u belongs to set݅ݑ
ݑ) ܷ ∈ ܷ) and item i belongs to set I (݅ ∈  so the user u has i past-recommended item and R is a set of ,(ܫ
ratings for each item by the user, denoted by ܴ௨. The range of rating is integer values that have been sorted 
as ܴ ൌ ሼ1,2,3,4,5ሽ. To understand the process of recommended user’s profiles; subset u considered as new 
users and subset v considered as active users; so that u and v represented as ሼݑଵ, ,ଶݑ ,ଷݑ … , ݑ | ݑ ∈ ܷሽ 
and ሼݒଵ, ,ଶݒ ,ଷݒ … , ݒ | ݒ ∈ ܷሽ. Equation (1), (2) are used to compute the ሾ݊ ൈ ݊ሿ similarity matrix between 
user u (new user) and user v (active user) where n is the number of users in both subsets. This similarity 
matrix element is computed using equation (a). 

 

 

 
 
 
 

Several machine learning and data mining approaches are used by researchers in the domain of 
recommender systems [16]. We used a machine learning k-nearest neighbor with collaborative filtering to 
improve users profile preferences similarity performance. In our approach, the user (new-user) u’s profile 
attributes are compared with nearest-neighbor user v’s personalized profiles preferences and content ratings 
on item i. This comparison is calculated based on the user v profiling content/item i voting/rating of 
likes/dislikes combined with users that voted/rated similarly the item i. Such approach depends strongly on 
the number of nearest-neighbors that rate the item i and recommends the similar rated/voted user v profile as 
the user (new-user) u. The nearest-neighbor (k-nn) query object may access directly to the next neighbor 
object and filter the required object [21]. K-nn’s of the user (new-user) u are computed using a similarity 
measure. Equation (2) and (3) are the most used similarity measures in hybrid filtering approaches for 
recommendation systems [22]. Let us assume u and v are two users in hybrid recommender systems, so the 
set of all relevant items of user’s u and user’s v are denoted as ܴܫ௨௩. In our method, the user’s u and v are 
both treated as vectors |ܴܫ௨௩| where ݑሬԦ.  Ԧ, norm vectorݒ ሬሬሬԦ andݑ Ԧ denotes the dot-product between the vectorsݒ
space of users u calculated as  ‖ݑሬԦ‖ଶ and users v as  ‖ݒԦ‖ଶ using personalized profile preferences. So the 
similarities between users u and users v are analysed as follows: 

 
,ݑሺݕݐ݅ݎ݈ܽ݅݉݅ݏ ሻݒ ൌ cosሺݑሬԦ,  Ԧሻ                                                                                                                                                         ሺ1ሻݒ
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                                                                                                                 ሺ3ሻ 

 
The content-based collaborative filtering (CBCF) finds the set of items ܴܫ ൌ ሼݑଵ, ,ଶݑ ,ଷݑ … ,  ሽݑ

previously rated by the new-user u and selects the items that are similar to the item i used as required goal of 
a new-user u using a similarity measure. In the case dataset, we used the ‘MovieLens’ dataset with movies 
features that characterize the rated movies such as genre, country and date. Combination of content-based 
and collaborative offers quick fixes that can be included in this feature. These quick fixes make it effective to 
return quality results in minimum time period [21]. We used this hybrid filtering in the content-based 
filtering to compare the new and existing users’ profiles collaboratively. Measuring the similarities and 
differences in rating scale between users shown in Equation (4). The recommended item rating using the 
user’s profiles, correlation users profile and correlation similarity measures are computed using the following 
formula: 

 

௨,ݎ̂ ൌ ௨ݎ 
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In Equation (4) ݎ௨, is the recommended content rating of the new-user u on the item i. Here ݎ௨ is the 
mean content rating given by the new-user u, ௨ܲ,௩ is the collaborative profiles correlation similarity between 
new-users u and v (active user) in the collaborative neighborhood. It also analyses the personalized profile 
preferences similarities along the ሾܰ ൈܯሿ columns of the user-to-user similarity matrix.  

Goal, in recommender systems is an identification of requirements and achievements of required 
products/items required by the user. The definition of goal is [23]: “a goal specifies the objectives that a 
client may have when he consults a web services”. This research paper used goal term as a common 
vocabulary to requeste services, as requesters will select defined goals to express their required 
items/products and services will link to existing goals. In goal-based filtering, a new-user profiling 
characteristic plays an important role in identifying the categories of users that like certain kinds of items or 
have similar required goals and recommendations. Neighborhood collaborative and content-based 
collaborative filtering (CBCF) means user-profiling characteristics can be used to overcome the limitations of 
both content-based and collaborative (hybrid) filtering. We measure the profiling characteristics/contents 
similarities between users as follows: 

 

௨ܲ,௩ ൌ ,ݑሺݕݐ݅ݎ݈ܽ݅݉݅ݏ ሻݒ ൌ
⋃ ݅ ∈ ௨,ݎ௨௩൫ܫܴ െ ௩,ݎ௨൯൫ݎ െ ௩൯ݎ

ට⋃ ݅ ∈ ௨,ݎ௨௩൫ܫܴ െ ௨൯ݎ
ଶ
ට⋃ ݅ ∈ ௩,ݎ௨௩൫ܫܴ െ ௩൯ݎ

ଶ
                                                                  ሺ5ሻ 

 
From Equation (5); ݎ௨ ܽ݊݀ ݎ௩ are the averages of the u and v user’s profiles characteristics/ contents 

ratings. In our proposed model, we employed Equation (1) to compute the similarity between user’s u and v. 
The users (u,v) and items i are represented by an ሾܰ ൈܯሿ similarity matrix. Thus, the similarity is computed 
along the rows of the matrix. The k-nn is used to select the most nearest similar users. In a recommendation 
environment; a recommender system works as to acclaim the users goals for enhancing the user’s interest, 
reduce boredom and promote clarity to achieve the required item/product [22]. Figure 3 is defining the 
working of goal-based hybrid filtering recommender system with the similarities between two user’s profiles 
collaboratively. It shows the operational working of Equations (3), (4) and (5) respectively. 

 
 

 
 

Figure 3. Operational model of goal-based hybrid approach 
 
 

In goal-based filtering, we used the profiling characteristics/contents of existing user’s v (e.g. age, 
gender, occupation, zip code and ratings, etc) and matched with new-user’s u profile characteristics/contents. 
These characteristics/contents of users profiling are available in the ‘MovieLens’ dataset. It helps to create 
the categories of different users that share/like the same content and which have the same profile 
characteristics/content. The k-nn is used to create these categories using the collaborative filtering. The 
profile characteristics and rating content comparison of a new-user u on item i with existing user profile 
characteristics and rating contents are computed using only the category to which the new-user u belongs. 
The accuracy of new-user profile content filtering depends on the number of nearest neighbors of the new-
user u. 

In order to make good recommendations, the recommender system learns first the user’s preferences 
and tastes based on user recommended learning content ratings. In new-users profile scenario, traditional 
collaborative filtering fails to recommend these new users because there is no or less recommended ratings 
history. The goal-based hybrid approach with the incorporation of user’s profiles content filtering can 
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improve the new-user cold-start profile content filtering accuracy of a recommender system. To do so, Table 
1 describes the necessory steps: 

 
 

Table 1. Operational steps of goal-based filtering 
Step 1 Detect the new users’ nearest neighbors’ profiles collaboratively using the KNN algorithm with collaborative 

filtering approach. 

Step 2 Compare the new users’ profiling content with existing user’s profiles that share the same profile characteristics. 

Step 3 Establish the new users and existing users profile similarities using equation (4) in neighborhood collaborative 

filtering (NCF). 

Step 4 Based on the ratings of the nearest neighbor user’s recommended content, compute the recommendations for the 

new-user u on the item i using equation (5). 

Step 5 Output recommendations based on user’s requirements/goals. 

 
 
The ‘MovieLens’ database provides a set of predefined characterization using 5-fold validation 

analysis based on (gender, occupation, users) and (genre, movies) with their ratings information. In 
experimental setup, the user data is categorized in user groups (e.g. age, gender, occupation, etc) are available 
in the ‘MovieLens’ dataset. Figure 4 shows the detail of user categorized data. 

 
 

 
 

Figure 4. ‘MovieLens’ dataset user profile data 
 
 
There are 19 movie genres/categories. A movie can belong to more than one genre/category. Here 

each user rates minimum 20 and maximum 50 movies using integer values in the range ሼ1  ݎ  ݎ | 5 ∈ ܴሽ, 
where 1 identifies the lowest rating r and 5 indicates highest rating r against items i. The experiment was 
performed on the ‘MovieLens’ dataset. The dataset comes with five predefined splitting; each user rated 20% 
of movies, containing 943 users’ and 1682 movies with 100,000 ratings [21]. Each user rates approximately 
(20-to-50) movies. The ratings are on a numeric five-point scale with (1, 2, 3, 4 and 5). We note that not all 
movies are rated by all users. 

 
 

3. EVALUATION AND RESULTS 
In this phase, we have done the evaluation of new hybrid filtering recommendation results using two 

famous evaluation matrices normaly: Precision (Pr) and Recall (Re). This evaluation/analysis helps to 
indicate that the proposed approach performance is improved on new-user cold-start profiling issue in hybrid 
filtering recommender systems. In this section, we acquaint the results of goal-based hybrid filtering 
approach for recommender system. We performed our experiment on the ‘MovieLens’ dataset which 
contains 943 users’ and 1682 movies with 100,000 ratings (discussed in section 4). To get the initial results 
of our new hybrid approach on new-user cold-start profile content filtering accuracy problem, we randomly 
elected 500 user’s data as training set. The ‘MovieLens’ have 943 users data. The procedures for calculating 
the precision and recall are as follows: 

 

Precision ሺܲݎሻ ൌ
ݏݐ݊݁ݐ݊ܿ ݃݊݅݊ݎ݈ܽ݁ ݀݁݀݊݁݉݉ܿ݁ݎ ݂ ݁ݖ݅ݏ ݈ܽݐܶ

ݏݐ݊݁ݐ݊ܿ ݃݊݅݊ݎ݈ܽ݁ ݂ ݁ݖ݅ݏ ݈ܽݐܶ
                                                                                 ሺ6ሻ 

 

Recall ሺܴ݁ሻ ൌ
ݏݐ݊݁ݐ݊ܿ ݃݊݅݊ݎ݈ܽ݁ ݀݁݀݊݁݉݉ܿ݁ݎ ݂ ݁ݖ݅ݏ ݈ܽݐܶ

ݏݐ݊݁ݐ݊ܿ ݃݊݅݊ݎ݈ܽ݁ ݐ݊݁ݒ݈݁݁ݎ ݂ ݁ݖ݅ݏ ݈ܽݐܶ
                                                                                        ሺ7ሻ 
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To improve the cold-start in traditional collaborative filtering we combined k-nearest neighbor and 
named it as neighborhood collaborative filtering (NCF). This combination enhanced the precision 
“recommendation accuracy” and recall “filtering accuracy” as shown (precision: 55.41%, recall: 52.61%) 
more than (TB-CF), (CB-RS) and (CBCF) approaches. The third and last step combined the two improved 
approaches (CBCF) and (NCF) for goal-based hybrid filtering approach. By using the equation (6) and (7), 
results (precision: 64.60%, recall: 54.91%) shows more improved results of precision “recommendation 
accuracy” and recall “filtering accuracy”. The purpose of combining the two improved approaches is to use 
all the possibilities for decreasing the new-user profile (cold-start) issue and increase the efficiency of 
recommendation approach with minimum code complexity. Figure 5 demonstrates the graph representation 
of precision (%) and recall (%) accuracy results of all approaches for new-user profile (cold-start) issue.  

 
 

4. CONCLUSION 
In this paper we introduced an efficient hybrid approach for recommender systems. Hybrid approach 

basically in recommender systems is the combination of content-based and collaborative filtering. We 
proposed a novel goal-based recommendation approach which used the content-based and collaborative 
filtering but in a different way. We used machine learning technique (k-nn) k-nearest neighbor network. The 
idea to use the machine learning in recommender systems with collaborative filtering is to enhance the 
expertise of proposed approach for improving the new-user profile cold-start issue more efficiently and 
accuratly than traditional hybrid recommendation approaches. To achieve this, we combined k-nearest 
neighbor (k-nn), collaborative filtering (CF) and content-based filtering (CBF) techniques. This work also 
helps to improve collaborative filtering using k-nearest neighbor as neighborhood collaborative filtering 
(NCF) and content-based filtering as content-based collaborative filtering (CBCF). By combining these 
approaches we proposed a novel goal-based filtering approach for recommender systems. The goal-based 
filtering approach is incorporated in our hybrid approach to improve new-user cold-start profile issue. For 
evaluation of the results we used precision and recall matrices. Our work indicates that the user-to-user 
personalized recommendation can improve the recommendation accuracy of e-learning recommender 
systems in terms of new-user profile (cold-start) issue. 

Our work suggests interesting future extensions and directions. First of all, we will improve our 
novel goal-based hybrid approach. Second we will increase the experimental data to test the efficiency of our 
approach with large amount of dataset. 
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