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 In this paper, an artificial neural network (ANN) is designed to optimize the 
matrix gain of state feedback controller. A linear mathematical model of a 
synchronous generator with excitation system is used as controlled system. 
The conventional methods that used to find the matrix gain need tedious 
calculations with compared to neural networks. The simulation proves that 
the proposed feedback controller based neural network optimization method 
has the better result in order to prove the dynamic performance of a single 
machine connected to infinite bus system(SMIB). The robustness of the 
proposed controller is tested by disturbance in excitation voltage.  The results 
are compared with results of controller based on conventional methods. The 
potentials of the proposed technique are investigated using MATLAB 
software. 
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1. INTRODUCTION 

There are hundreds of generating units in an interconnected power system. These units transmit the 
power to loads by long transmission lines. When a power system subjected to small and sudden disturbances, 
low frequency oscillations will be generated. If these oscillations are not well damped, they will grow in 
amplitude and limit the power transmission capability of the network [1]. Synchronous generator excitation 
control system (SGECS) is one of the most important measures to enhance power system stability and to 
guarantee the quality of electrical power it provides. An additional control signal in generator excitation 
system is usually used to improve the stability of the system. Some closed-loop feedback control theories can 
be used to generate control signal in excitation system. 

In recent years, there is a trend that the new control theories are used in the SGECS with the 
development of the modern control and intelligent theories [2].Studies on state feedback controller of 
synchronous generators system have been reported well in the literature. Many attempts were made in last 
years regarding the design of state feedback controller for synchronous generators. In Ref [3], an adaptive 
design of an automatic voltage regulator (AVR) control scheme for synchronous generators was introduced 
in the presence of unknown variations of power system operating conditions; the AVR design is based on 
pole-assignment technique and the estimation is performed by kalman filter. The main difficulty in designing 
the controllers based pole-placement technique is the selection of closed-loop poles locations. The author in 
Ref [4] designed a digital Optimal AVR of synchronous generator using Linear Quadratic Regulator. In Ref 
[5], the authors designed the linear quadratic regulator (LQR) weighting matrices based on Genetic 
Algorithm (GA) and Particle Swarm Optimization (PSO). For these techniques, all state variables of the 
system must be physically measurable. From a control point view; it is known that the dynamic stability 
enhancement depends on the type of the excitation controller that is used for the synchronous generation 
units. However, the design of these control devices is far from clarity due to the nonlinear and complex 
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behavior exhibited by power system. Hence, two assumptions that simply the excitation control design are 
currently widely accepted, namely: Considering a single generator connected to an infinite bus (SMIB) 
system, is very useful in describing the dynamics of a multi-machine system. Although the actual dynamics 
of a synchronous generator is extremely complex, the dynamic model used for controller design purposed can 
be of low order, i.e: fourth order system has shown to be adequate from a control viewpoint [6]. In this paper, 
a simple Neural Network model is designed to generate the matrix gain K of state feedback controller by 
picking-up the steady state gains of proposed neuro-controller. To the best of author’s knowledge, there has 
been no published research in designing the state feedback controllers by using the proposed technique. 
Therefore the obtained results form a real contribution in the area of state feedback controller design based 
neural networks .The simulation results of the system under study are compared with the results that based on 
state feedback controller which generated by conventional optimal theory. 
 
 
2. MATHEMATICAL MODELLING 

A single- machine infinite bus (SMIB) power system as shown in figure.1 is used as study model in 
this paper. This model is consisted of a single synchronous generator connected through a transmission line 
to a very large network approximated by an infinite bus. The fourth order nonlinear dynamical model of the 
SMIB power system is presented by differential equations [7]: 
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By linearizing the above equations on at operating point, we have the state variable model of a single 
machine to infinite bus as:  
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Where state variable X is defined by: ],',,[ FDq EeX    where:  :Speed Deviation; 

 :Load Angle Deviation; 'qe :Voltage due to Flux Linkage Deviation; FDE :Field Voltage Deviation. 

In the above system matrix A and B are represented by: 
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Also; the terminal voltage deviation and output power deviation can be expressed respectively as: 
 

'65 qt eKKV    ; '21 qo eKKP    (6)  

 
Where the system parameters are defined and listed in Table 1. 
The input mechanical torque Tm is treated as a constant in excitation controller design [8]. 
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Figure 1. System model 
 
 
3. CONTROLLER DESIGN 
 
3.1.  Optimal Control 

For the linear optimal control design of an electric power system, a quadratic performance index is 
usually chosen as: 

 





0

][
2

1
dtRuuQxxJ TT  (7) 

 
Where: Q and R are the weighting matrices (or penalty matrices) of the state and control effort, respectively.  
To optimal control design the Eq.(7) must be minimum. The major step of the minimization is to append 
Eq.(5) to     Eq. (7) to form a Hamiltonian generalized-energy function as shown in Eq.(8): 
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Where p is called the co-state vector and can be calculated from the Riccati equation [9]. To find the gain 
matrix K of state feedback controller based linear optimal control, the following condition must be satisfied: 
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Carrying out the differentiation of Eq. (8), the result is shown as: 
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And the control law will be given by: 
 

pBRu T1  or Kxu   (11) 

 
The resultant closed-loop system is then: 
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In this work, the values of the Q and R matrices that used in the simulations are chosen to give acceptable 
performance of closed-loop system and to minimize the control effort as: 
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The matrix Q is chosen as identity because the system states have equally important. Therefore, the gain 
matrix K of control law u=-Kx is: 
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The resulting controller u is known as linear- quadrant state feedback regulator [10]. From this state feedback 
controller, we can easily notice that all state variables of the system must be physically measurable. 
 
3.2.  Neural Network Control 

Neural networks offer an excellent approach for computing inspired by the brain’s behavior. The 
elements (neurons models) are thought to mimic the basic behavior of real human neurons. Different forms 
of inter-connection of neurons will produce different neural network strategies such as feed forward and 
recurrent networks. The strength of the neural networks approach is its ability to generalize from the training 
examples to the entire domain and its ability to accommodate noise and poor data. One of the most popular 
architectures for ANN control is the multilayered neural network (MNN) trained with the back-propagation 
(BP) algorithm. The back propagation algorithm is used to update the weights of multilayer perceptron 
network algorithm. According to the delta rule, the weights are updated as follows: 
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Where j is the previous neuron index, i is the present neuron index, k is the iteration number, wij is the weight 
from neuron j to neuron i ,  and mom are the learning and momentum coefficients respectively[11]. In this 

work, the ANN chosen is of a feed forward type, using back-propagation algorithm for weight updating. This 
multilayered network has five inputs. The system states and excitation signal is used as input to proposed 
NN. The proposed NN has two hidden layer with 10 neurons for each layer. The nonlinear transfer function 
of the nodes is chosen to be a sigmoid function. Since it is the most proper activation function to perform 
linear and non-linear functions modeling, control and classification. The training parameters in the back-
propagation algorithm, i.e. the learning factor and the momentum coefficient were selected as 0.6 and 0.9 
respectively. The training process is shown in figure 2, where the desired controller (ud ) is the target data 
that obtained from optimal controller law in previous section. The training process will be stopped when the 
prespecified error or the maximum epoch are reached. After the training of NN controller is completed and 
tested, the optimal gain set is chosen according to the results shown in figure (3), which shows the 
performance of neuro-controller. The graph indicates that the best steady- state gains of controller output are 
k1= 45.7010, k2=11.5321.  
From these results, the gain matrix K of the proposed state feedback controller based neural network can be 
written as: 
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In this proposed state feedback controller based neural network only two state variables of the system must 
be physically measurable. By comparing the proposed matrix gain with one which generated by conventional 
control method, we can easily notice that only two state variables must be known to generate the desired 
control signal.   

 
 
4. RESULTS AND DISCUSSION  

The Runge-Kutta numerical method is used to simulate the power system under study by using 
MATLAB software. The system parameters and initial conditions which used in simulation are taken from 
Ref.[7] and listed in Table 1. The performance of the proposed state feedback controller based neural 
network is tested in two cases: 
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Figure 2. Structure of the direct inverse modeling in the NN training 
 
 

 
 

Figure 3. Performance of the Neural Controller 
 
 

Table 1. Initial Conditions and Nominal System Parameters 
Parameter Description Value Unit 

Po Initial Active Power 0.9 pu 
Q0 Initial Reactive Power 0.3 pu 
Vto Initial Terminal Voltage 1.0 pu 

H=M/2 Inertia Constant 4.64 Seconds 
D Damping Factor 0 pu 

T'do Field Time Constant   7.76 Seconds 
xd Direct axis Reactance 0.973 pu 
x'd Direct Transient Reactance 0.19 pu 
xq Quadrature axis Reactance 0.55 pu 

TA Exciter Time Constant 0.05  Seconds 
KA Exciter Gain 50 -- 
Re Transmission Line Resistance -0.034 pu 
Xe Transmission Line Reactance 0.8 pu 
B Local Load  susceptance 0.262 pu 
G Local Load  conductance 0.249 Pu 
K1 Synchronous Machine factor 0.7901 -- 
K2 = 1.3459 -- 
K3 = 0.6033 -- 
K4 = 0.8905 -- 
K5 = -0.0613 -- 
K6 = 0.7457 -- 

 
 
Case1: Nominal Operation. 

The first simulation test concerns on the dynamic performance of the system under nominal 
conditions, i.e, no parameter changes and no disturbances. As depicted in Figure (4), the responses of the 
system exhibit a good transient performance. The comparison between proposed state feedback controller 
and optimal controller shows the effectiveness of proposed one in terms of overshoot and settling time.  
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Case2:  30% Step change in excitation voltage at different values of Exciter gain KA: 
1. Exciter gain KA=50 (Nominal Value). 
2. Exciter gain KA=20.  

In order to test the effectiveness of the proposed controller, the 30% step change in excitation 
voltage is applied for 5 seconds at 15 seconds. 

From Figure (5) and Figure (6), the better performance of the proposed controller over conventional 
one in damping out the step disturbance is explicit. 
 
 

   
 

   
 

Figure4. Time Responses of the System under Nominal Conditions. 
 
 

   
 

   
 

Figure 5. Time Responses of the System at 30% disturbance in Excitation Voltage with KA=50. 
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Figure 6. Time Responses of the System at 30% disturbance in Excitation Voltage with KA=20. 
 
 
5. CONCLUSION 

Multilayered neural networks have been successfully used to produce gain matrix K for the state 
feedback controller. A control signal based neural network is used to improve the dynamic performance of 
synchronous generator connected to infinite bus through transmission lines (SMIB). The simulation results 
with two test cases demonstrate the effectiveness of using the state feedback controller based neural network 
instead of conventional one. The proposed control strategy is suitable for real time implementation, because 
only two state variables of the system must be physically measurable to generate proposed control law. In 
contrast, the conventional control needs all state variables.  
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