International Journal of Electrical and Computer Engineering (IJECE)
Vol. 3, No. 6, December 2013, pp. 805~814
ISSN: 2088-8708 a 805

Evaluation of High Speed Hardware Multipliers - Fixed Point
and Floating point

Awais Ahmed®, Syed Haider Abbas?, Muhammad Faheem Siddique?, Hussnain Haider?
School of Electrical Engineering, University of &aliabad, Pakistan
’Departement of Electrical Engineering, Sarhad Unsitg of Science and IT, Pakistan

ArticleInfo ABSTRACT

Article history: There is a huge demand in high speed arithmetickbjodue to increased
. performance of processing units. For higher frequestocks of the system,

Received Aug 11, 2013 the arithmetic blocks must keep pace with greatguirement of more

Revised Oct 14, 2013 computational power. Area and speed are usuallflictimg constraints so

Accepted Nov 1, 2013 that improving speed results mostly in larger aréaur research we will

try to determine the best solution to this problencomparing the results of

different multipliers. Different sized of two algdmms for high speed
Keyword: hardware multipliers were studied and implementdPiarallel multiplier,

. . . Bit serial multiplier. The workings of these two ripliers were compared
Bit Serial Multiplier by implementing each of them separately in VHDLndmber of high speed

Fixed Point adder designs are developed and algorithm and rdedighese adders are
Floating Point discussed. The result of this research will helpoushoose the better option
Parallel Multiplier between serial and parallel multipliers for botefi point and floating point
VHDL multipliers to fabricate in different systems. Asiltipliers form one of the

most important components of many systems, ang\diiifierent multipliers
will help us to frame a better system with area beiter speed.

Copyright © 2013 Institute of Advanced Engineering &cience.
All rights reserved.

Corresponding Author:

Syed Haider Abbas

Departement of Electrical Engineering,

Sarhad University of Science and Information Tedbay,
Hayatabad Link, Ring Road, Peshawar, Pakistan
Email: habbas33@gmail.com

1. INTRODUCTION

Multipliers are the major components of high perfance systems used extensively in digital
electronics such as microprocessors, digital signatessors and FIR Filters etc. The performancangf
system is determined by the performance of multiplibecause they are the slowest part in the system
Moreover, they require greater area than other covpts. Therefore, optimizing the speed and areheof
multipliers is the foremost issue. As area and d@ee both conflicting constraints this means thagreater
speed we need larger area. A number of algoritrmprposed and used to design multipliers andi¢heal
implementation is mostly some little refinementsl asariations of the few basic algorithms preserteck.
In addition to choosing those algorithms for aduditisubtraction, multiplication etc an architectstnmake
other decisions like how exceptions should be hathdhd what precisions should be implemented. We ha
designed two typed of multiplier for fixed and ftwey point [1-2].

Our discussion on floating point will focus almestclusively on the IEEE floating-point standard
(IEEE 754) because of its rapidly increasing acmeg. Although floating point arithmetic involves
manipulating exponents and shifting fractions, bk of the time in floating point is spent openation
fractions using integer algorithms. Thus, after discussion of floating point we will take a moretailed
look at efficient algorithms and architectures.

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

IJECE ISSN: 2088-8708 a 806

When two binary numbers, multiplicand “N” and mplier “M” are multiplied the algorithm
utilises distributive property of multiplication.h& multiplication of M*N consists of partial prodsovhich
represents a single component of the total prof@jc binary multiplier can be decomposed in teuan of
partial products. It can be done by selection pésaial product value, and some shifting that tejmendent
of the selection value. Opting a group length faultiplication limit us to make a trade-off betweére
number of partial products and the complexity ahpating them.

2. BINARY NUMBER REPRESENTATION
2.1. Fixed Point Arithmetic

Most of the general Digital processing applicatiosg fixed point multiplication due to its easier
algorithm and clear understanding. A multiplicatizan be implemented using a network of binary staiftd
adders [1] [4-6]. The hardware cost can be appratéoh with the required numbers of adders and
subtractors. The basic concept of multiplicatiorsiisiilar to the traditional pencil and paper methad
similar example is shown in the Figure 1.

. : 10001111
decimal binary

l—’ 1
multiplicand 11 1011 >0
x multiplier x 13 x 1101 4
partial product 33 1011 8
+ partial product 0000 0
product 1011 0
10001111 L 4178

143
Figure 1. Block Diagram of the Hardware Setup afjéuat

We can see that, there is no carry unlike the dalcimultiplication which makes the hardware
easier. From above example we can see that thelpambducts were either zero or same as multiptica
except that they were shifted to left.

2.2. Floating Point Arithmetic

There are number of applications that require detinotations. The non-integer numbers are
represented in various forms. Whereas, one of thastbod has gain wide recognition and is calledtifm
point representation.The real number is representegientific notation where the binary word ivided
into mantissa and exponent. For instance 123.46Geaepresented as 1.23456 x 102. This methoésolv
many problems. However, it has a fixed window giresentation, which limits it from representing yer
large or very small numbers [7-9].

Floating point representation is not straight farevas the schematic of the rest of representation
methods. It contains variation which includes thenber of bits allocated to the exponent and mamtise
range of exponents, how rounding is carried owd, abtion taken in exceptional conditions like urfider
and overflow. These days IEEE 754-1985 standaml laf®wn as international standard IEC 559 is used
vastly. IEEE 754 has defined two types of storayelts for floating points [10]

Single Precision 32 bits: 1 S-bit, 8 Exponent bits & 23 fraction bits.

Double Precision 64 bits: 1 S-bit, 11 Exponent bits & 52 fraction bits.

A simple floating point multiplication for two bima numbers can be seen below mathematically.

(Fyx25) x (F, x2%) = (Fyx Fy) x 2050

= F x2F
The multiplication includes the addition of expoteeand multiplication of fractions. The product

fraction is then normalised and exponent overflowioderflow is observed. Finally the product fraatiis
rounded. The flow chart diagram for floating paimaltiplication can be seen in Figure 2.

Evaluation of High Speed Hardware Multipliers - EtkPoint and Floating poinSyed Haider Abbas)

807 a ISSN: 2088-8708

Add exponents

|

Multiply fractions

B . eXponent
Set E= "
for zero

|
a. Right shift F

Shift F Left
E<=E-1

T

Exp
overflow

Set indicator

Figure 2. Flowchart for floating point multiplicati

3. ALGORITHMSAND ARCHITECTURES

There are many algorithms and architectures usedntiltipliers some of them are suitable for
FPGA while few are not. Here, we will discuss amdpiement two of these algorithms i.e, bit-serial
multipliers and parallel multipliers.

3.1. Bit-Sequential Multiplier

In Bit sequential multiplier also known as bitisémultiplier, input bits arrive on a single wiower
a number of clock cycles and output bits are predigerially (Figure 3). Digital serial architectymecess
more than one bits at a time.

This is done by dividing the N-bit word into X diffent digits of Y bits wide each, where N is X*Y,
The main objective behind this approach is to misénthe speed of operator by a factor greateritbagize.
It works in the similar manner of manual multiplice of two decimals. This is relatively slow besau
adding N partial product requires N clock cyclebeTeasiest clocking scheme is to make use of amyst
clock. If the multiplier is embedded in a largerstgm. The clock in normally much slower than the
maximum speed at which the simple iterative mukiptan be clocked, so if the delay is to be mingdi
and expensive and tricky clock multiplier is neededhe hardware must be self clocked [2].

IJECE Vol. 3, No. 6, December 2013 : 805 - 813

IJECE ISSN: 2088-8708 a 808

—* Iiulhplicand Register
B Partial Product Generator
Eh
o
3 !
o
& Adder
=
X Tighs Shist
Clock > Product Registar

Figure 3. Simple bit-serial multiplier

3.1.1. Fixed Point 16x16 Bit-serial Design

To design the fixed point 16x16 Bit Serial muligpl33 bit accumulator was used to store the result
Bit adders were designed using “and”, “or” and “xagrates [3]. A state machine was designed for
multiplication to shift the bits. Total number a2 3tates were used to perform the operation. wtsa s 0
and st is 1 the multiplier is loaded into accumuiand at the same time state changes to 1. Thtidan
named add16 is used to computes two 16 bit veethose result is 17 bit. This represents the addgiud
which is loaded into ACC and at the same time tatescounter is incremented. The right shift onAGC is
accomplished by loading ACC with 0 concatenatedh wipper 32 bits of accumulator. The states wiliraef
the number of shifting and bit to bit addition ofitiplier and multiplicand. Figure 4 is the simudat result
of the fixed point bit serial multiplier.

1200 1400 1E0

Figure 4. 16x16 Bit Serial Fixed point multipliemalation

We can seen that at 800ns 16 bit multiplicand tavadue of 229 in decimal is multiplied with the ltiplier
of 63549 value in decimal and their product is 12488 which is at 1350ns because all the states are
finished and the done signal is up at this stage.

Evaluation of High Speed Hardware Multipliers - EtkPoint and Floating poinSyed Haider Abbas)

809 a ISSN: 2088-8708

3.1.2. Floating Point 16x16 Bit-serial Design

The same multiplier is designed for greater numiifebits by using greater accumulator size.
Floating Point 16x16 Bit serial design 16 bits foultiplicand and multipliers were divided into 1@ b
mantissas and 6 bits of exponents. The 10x10 hélsaultiplication for mantissas of the 16x16 fidating
point multiplier. The 10x10bit multiplication is de in the similar manner as done above for thedfp@int
multiplier. The exponents are added to find theoevgmt of the product. Afterwards resulted exponamse
normalised and adjusted the decimal point for tleelpct. The final exponent and mantissa of the peods
loaded properly according to floating point repreagon.
The simulation results of the floated point carsben below in Figure 5.

X=(0101110010101114}oaing = (44000.25),
Y=(0000000000000008)0iing) = (D)o
Z=X*Y=(0001111010101111}0aing)

= (0.00002047)= (0)0

110000
001111

H [u]f]

Curzar 1

Figure 5. 16x16 Bit Serial Floating point multigli@mulation

Note that representations of 0 is an irritatingraaty, but the IEEE committee decided that it was
benign compared to the complexity of any technigtiesy considered for avoiding it. Floating point
representation has some limitations which inclutiedength of mantissa for example 000000000000G900
when converted to decimal it comes to 4.65e-10s Thbecause of the non zero digit to the left sifithe
mantissa when converting it to the decimal. Thithes same reason why we are getting not exact sdore
our examples.

3.2. Paralle Multiplier

In bit parallel design all the input bits of thengale word are read in single clock cycle and output
bits are read together. In addition, when the ahgroducts are to be added the adders are comngcte
parallel. This requires no more hardware than ealimrray but does have more complex interconmetio
The time require to add partial products is nowpprtional to log N, so this can be much faster tlage
values of N. On other hand the extra complexityhi@ interconnection may result in greater size izde
delay [4]. The partial products can be formed byaemay of AND gates. These partial products caadsed

IJECE Vol. 3, No. 6, December 2013 : 805 - 813

IJECE ISSN: 2088-8708 a 810

together using three adders to add the four paptiadiucts after partial products are shifted atiddfiwith
zeros. For instance, AO is 00001011 and Al is 00000A2 is 00101100 and A3 is 01011000 whereas the
partial product is equal to AO+A1+A2+A3. Anothemapach can be tried using carry save adder arEys [

3.21. Fixed Point 16x16 bits Parallel M ultiplier Design

To design the fixed point parallel multiplier in \YH 16 bit multiplier and multiplicand vectors
were used and other vectors for partial product gtial sum PS, and partial carry PC are declared.
Multiplier and multiplicand was loaded onto firstykr of partial product. Full adderswere implemeérftr
the addition of partial products [6]. Whereas, fiv@duct output from the partial sum forms the most
significant bit of the product from the left mosilifadder’'s carry output. Figure 6 is the 16x16éixpoint
multiplier. We can see from the figure that thesend clock because the design has generate stagemen
Moreover, the product is shown at the same tinganallel multiplier.

Al s
Lt Amplier | f

Ll Aprod... | 5

QOo0ooT o ¢

urzor 1 14108860 ns
| wlall W 1T

Figure 6.16x16 Bit Fixed point Parallel multipli@mulation

3.2.2. Floating Point 16x16 bits Parallel Multiplier Design

Design of the floating point parallel multiplier $émilar to that of bit serial parallel multipliefhe
only difference is that instead of multiplying th@ bit mantissa using bit serial multiplication uge parallel
multiplication technique. The rest of the codeiisilar and need not many changes. The simulatisult of
the floated point can be seen in Figure 7.

X=(110111001010111}0aing = (44000.25),
Y=(110011010010001@}oaing= (200.5),
Z=X*Y= (011011000001101Q}04ing)

= (8814592)~ (8822050.125)10

4. IMPLEMENTATION RESULTS

The main objective of this research is to compafferént multiplier algorithms. The multiplier
designs presented above are designed using VHDIsymtiesised using Xilinx ISE 13.1. Here, we présen
the implementation results of multiplier designs.

The performance measures considered here are sajleu(Area) and delay [8]. Two different
techniques of multiplier designs are investigatadfiked point for the various size of the multgs. These
sizes provides fair comparison of the two fixednpenultipliers described in previous sections. &nhy for
floating point multipliers 16 bit coefficient of ¢hsame multiplication techniques were implementatitheir
comparison is made between themselves and fixawt pailtiplication. During synthesis similar constits
and operating conditions were made as far as fdessib

Evaluation of High Speed Hardware Multipliers - EtkPoint and Floating poinSyed Haider Abbas)

811 a ISSN: 2088-8708

1001 OO 00 C 7707110070 01177 {01 01010000010 {11 001107 00100070
0011111000 I AT007 10700 OTO0T10700700010 0011111000 0
00T 0T 0OT000TE Toi 0710000071010 Jod11100110111017 311001101 00100010
100110 07770 [{ioiol [j00iid

011111 I T T A N (i KRR

000111 | Jototia [joriiar | 000111

100110 [100 [o0 [J100710

011111

[000001 [000000

00

[foofoooin [[Y7000
100700070 [000011010 a0
01100700071 00

1

100000 ng

Cursar 1 0 ns

Figure 7. 16x16 Bit Floating point Parallel muligyl simulation

The table below gives the implementation resultenfrsynthesis of these multipliers using Xilinx

ISE 13.1 tool. The best results based upon compilddes on maximum speed and minimum area is
presented here. Speed optimization id focused @heimenting the design in target technology libraith
shortest delay and fastest clock rate. Whereasagtmization looks for functional implementatiofi the
design with smallest total cell area in the tarlijatary [9]. The area column is taken from the KAi
synthesis tool. It shows the cell usage which idetuthe number of slices occupied by each desigath&r
result taken from the same tool is the estimategimmam clock rate for each design and optimizatiordm

it also represents the worst case propagation detaach design in these tables.

Table 1. Comparison results for fixed point mulépl

Fixed Paint Serial Paralle
Multipliers Area Delay (ns) Area Delay(ns)
8x8 hit 61 7.190 71 27.569
16x16 bit 118 8.124 290 52.708
32x32 bit 257 9.816 1194 101.214
64x64 bit 516 11.754 3612 199.053
128x128 bit 772 145.632 8229 391.98

The Table 1 gives the results of fixed point muikirs of different sizes form 8 bits to 128 bits
simulated for two different types of multiplierstBierial andParallel. It can be observed that thealfel
multipliers have relatively greater delay and itggies more area while bit serial multipliers canss less
space and little delay except 128x128 bit multiplidnere greater delay can be seen but still iteebéhan
the parallel multipliers.

Table 2. Comparison result for floating point nligr

oot rea

(16x16 bit) (No of dicesused) (ns)
Bit Serial 59 9.883
Paralle 108 30.637

IJECE Vol. 3, No. 6, December 2013 : 805 - 813

IJECE ISSN: 2088-8708 a 812

Table two gives the synthesis results for the fil@apoint multiplier for 16x16 bit vector. These
results can be compared with the fixed point mli#ip of same technique to observe the difference.

Now we will compare the fixed point multiplier résuwith the floating point designs the area for
the both multiplier design with 16x16 bit size caa seen in the figure below. Where it can be oleserv
clearly that the floating point design occupiedslesea than the fixed point multiplier. This reswts
anticipated earlier and the reason behind it ispenas in floating point multiplier only mantiss#share
multiplier while other bits for sign and exponent @added. Therefore, the number of slices occuipyethe
floating point is lower in number because few kite multiplied using the multiplication techniquas
shown.

Bit Serial Parallel
M Fixed Point M Floating point

Figure 8.Fixed point and Floating point Area comparison frap

The delay comparison can be seen below betweed figat and floating point multiplier and it can
be seen clearly that fixed point multiplier hasagez delay than floating point multiplier designesbas in
bit serial the delay of both designs are very ctoseach other.

60

50

40

30

20

Delav (ns)

10

Bit serial Parallel
M Fixed Point M Floating Point

Figure 9.Fixed point and Floating point Delay comparisonpfra

Evaluation of High Speed Hardware Multipliers - EkPoint and Floating poirSyed Haider Abbas)

813 a ISSN: 2088-8708

5. CONCLUSION

Multipliers are used as benchmark designs. Tweceddfit multipliers for floating and fixed point
multiplication are designed, implemented and suldiA comparative analysis of these multipliers is
presented, which is the principal contribution lotresearch. It was found that as we increasézenthe
delay as well as area of the hardware increaseseder, Parallel multiplier posses more area a$ agl
delay as compared to serial multiplier. Whereaflipating point design of a parallel multiplier ogies
lesser area than the fixed point design of thedsial multiplier.

REFERENCES

[1] P Denyerand D Renshaw. “VLSI Signal Processing.ASitial Approach’

[2] SG Smith, MS McGregor and PB Denyeilethniques to increase the computational throughgdubit serial
architectured. IEEE Proc on Intl Conf on Accoustics, Speech 8ighal Processing.

[3] L Kuhnel and Hartmut Schmeck. “A closer look at IMuultiplication”. Integration- the VLSI JournalSept 1988

[4] Avizienis A. “Signed digit number representatioms fast parallel arithmetic’lRE Trans, Elec ComputeSept
1961.

[5] Baugh CR and BA Wooly.A two complement parallel array multiplieDec 1973.

[6] Oscar Gustafsson, Henrikohlsson. “Minimum addeeget multipliers using carry save adders”. Linkgpin
university SWEDON.

[7] Carl Burch, Hendrix College, September 209Alpating point representation IEEE-754"

[8] Garry W Bewick. Fast multiplication: Algorithms and implementatiofreb 1994.

[9] L Dadda. “Some schemes for parallel multipliessita Frequena. May 1965.

[10] “IEEE Standard for Binary floating point arithmeticXNSUIEEE std 754-198Blewyork Aug 1985.

IJECE Vol. 3, No. 6, December 2013 : 805 - 813

