
International Journal of Electrical and Computer Engineering (IJECE)
Vol.2, No.2, April 2012, pp. 239~246
ISSN: 2088-8708 � 239

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Bridging XML and Relational Databases: An Effective
Mapping Scheme based on Persistent

Samini Subramaniam, Su-Cheng Haw, Poo Kuan Hoong
Faculty of Information Technology, Multimedia University, Malaysia

Article Info ABSTRACT

Article history:

Received Dec 14th, 2011
Revised Mar 1st, 2012
Accepted Mar26th, 2012

 XML has emerged as the leading medium for data transfer over the World
Wide Web. At the present days, relational database is still widely used as the
back-end database in most organizations. Since there is mismatch in these
two structures, an effective mapping scheme is definitely essential that
provides seamless integration with relational databases. On the other hand,
an immutable labeling scheme is certainly significant to dentify the XML
nodes uniquely as well as supports dynamic update without having the
existing labels to be re-labeled when there is an occurance of dynamic
update. As such, in this paper, we propose s-XML by adopting the Persistent
Labeling scheme as the annotation scheme to ensure seamless integration
with relational database and able to support updates without the need to re-
construct the existing labels. We conduct experiments to show that s-XML
performs better in terms of mapping the XML nodes to relational databases,
query retrieval and dynamic update compared to the existing approaches.

Keyword:

Labeling schemes
Mapping scheme
Persistent labeling
Query processing
Relational databases

Copyright © 2012 Insitute of Advanced Engineeering and Science.
All rights reserved.

Corresponding Author:

Samini Subramaniam,
Faculty of Information Technology,
Multimedia University,
63100 Cyberjaya, Malaysia
Email: ts42003@yahoo.com

1. INTRODUCTION

XML has emerged as a generic markup language for documents as well as the de facto standard for
data exchange over the World Wide Web. There are many different types of XML data found in today’s
document repositories, digital libraries and on the web, which range from simple flat text with little
meaningful structure to be queried to over truly semistructured data with a rich and often irregular structure.
For example, a business can easily model complex structures such as invoice, orders and inventory system in
XML format. In addition, there is hundreds of XML schema defined to encode data into XML format for
specific application domains.

On the other hand, relational database drive most businesses of any size today. Nevertheless,
relational database cannot meet all the demands of electronic business because it process data independently
of the context. In other words, relational database is simply not a good match for semi-structured content
represented in XML. However, since enterprises have invested trillions of dollars in relational database, they
would be much reluctant to simply replace relational database with a pure XML store.

Due to the demand for storing and querying XML data, especially for data exchange, a mapper to
store and retrieve XML (a tree structure) via relational database (tables with rows and columns) and vice-
versa is definitely essential. Since there are mismatches between the XML-structured data and relational data,
mapping plays an important role in providing seamless integration between these database infrastructures.

There are four basic relationships that a good mapping approach needs to cater for; the ancestor-
descendant, parent-child, sibling and level relationships. These information are known as structural

 � ISSN: 2088-8708

IJECE Vol. 2, No. 2, April 2012 : 239 – 246

240

relationship need to be stored in the relational tables to identify the connection between the nodes in the
XML document. This enables the user’s queries to be processed competently.

The dilemma that has been enduring for sometime is to come up with a mapping scheme that can
preserve basic relationships among the nodes for proficient XML processing. Basically, there are two types
of user queries, which are full-text query and structural query. Many existing approaches supports full-text
query but be oblivious to the structural one which results in inconsistencies in query retrieval and incapable
to furnish any query with the combinations of multiple criteria.

Apart from the support for both types of queries, a good labeling scheme must be able to support
dynamic updates. Dynamic update refers to the updating process (insertion of new node(s) and deletion of
existing node(s)) to the original XML data source. A good labeling method should generate immutable labels
that does not require modification during the occurance of dynamic update.

The rest of the paper is organized as follows. Section 2 illustrates some review on the existing
mapping schemes. Section 3 describes the new mapping scheme, s-XML. Section 4 explains the
experimental design, experimental results and discussions. Finally, Section 5 concludes the paper.

2. RELATED WORK

There are many mapping techniques such as the Relational DTD approach [13], the Edge approach
[3] and the Attribute approach [8]. The Relational DTD approach [13] maps XML data based on the
frequency of the element occurrence in an XML document. The elimination of less important elements and
grouping of elements based on incidence allows lesser space consumed, straightforward table schema and
efficient mapping to tables. However, this approach can only be used if the Data Type Definition (DTD) or
XML schema of an XML document is available. In Edge approach [3], XML document is shred into a single
relational table. As such, this approach may suffers from excessive table size error and multiple self-joins
may be require for query retrieval. Attribute approach [8] creates as much table as distinct element name that
appear in the document into different relational tables. This is one of the drawbacks of the Attribute approach
where the number of tables depends on the distinct element names in XML document.

An automatic mapping technique was proposed [7] from an XML document to relational databases
especially the nested structure of the XML documents is preserved. Association inlining was proposed [12], a
new inlining method, for mapping DTD to relational tables by improving their earlier versions of inlining
methods, i.e., Shared inlining and Hybrid inlining to reduce fragments and excessive joins. A lossless schema
mapping algorithm was proposed [1] to generate a database schema from a DTD, which makes several
improvements over existing algorithms. In addition, they also proposed two linear data mapping algorithms
based on Document Object Model (DOM) and Simple API for XML (SAX), respectively, to map ordered
XML data into relational data. Nevertheless, these mapping techniques are unable to support dynamic update,
an important feature to support ever-changing environment because of the limitation of the labeling scheme
in terms of persistency.

A good labeling scheme is certainly needed to ensure that the labels generated to uniquely identify
XML nodes are immutable at any point of time; to be exact during dynamic update. Dynamic update
comprises of updating processes (insertion of new node(s), deletion of existing node(s) or any kind of
updating processes) which happen at any point of time and require the existing labels to be maintained while
generating new labels for the new nodes. Several labeling scheme [11] [14] [5] [9] have been proposed which
can be broadly classified into four main categories; namely, Subtree, Prefix-based, Multiplicative and Hybrid
[6]. Nevertheless, not many existing labeling schemes support dynamic update especially in situation where
a massive updates are required. Yet, we observed that under heavy update, prefix-based scheme may not
need to be re-generated. As such, we adopt the Persistent Labeling (one of the prefix-based scheme) as the
labeling scheme in our propose mapping technique. In order to show the feasibility of our mapping approach,
we evaluate the (1) query response time needed to retrieve a set of queries, (2) time required for insertion,
and (3) time required for deletion against the existing techniques.

3. s-XML: OUR PROPOSED APPROACH
4.1. Background of Persistent Labeling Scheme

In XML, there are four main hierarchical relationships namely parent-child, ancestor-descendant,
sibling and level. A compact and robust labeling scheme is essential to allow quick determination of these
relationships between pair of nodes. In Persistent Labeling [4], each node is labeled as (l,[np,dp],[n,d]), where
l is the level of the node in the tree, [n,d] is the local label of the node, [np,dp] is the local label of the parent
node. Parent label of a node is the self label of the parent node.

IJECE

Bridging XML and Relational Databases: An Effective Mapping Scheme based on

Figure 1 explains how the [

Figure 2 shows an example of labeling scheme based on Persistent Labeling
will be labeled as (0,[1,1]) where 0 represents the level and [1,1] represents the local label of the node. This
element does not have a parent label since t
(1,[1,1],[1,1]). i.e., the ‘book’ reside in level 1, with the parent node labeled as [1,1] and ‘book’ is the first
child [1,1] among its sibling. Let us take another example. The ‘publish
[1,1],[5,1]), where 2 indicates that ‘publisher’ is in the level 2, [1,1] denotes the parent’s label of ‘publisher’
(which in this case the local label for ‘book’), [5,1] is the ordinal occurrence of ‘publisher’ among
(‘publisher’ is the 5th child of ‘book’).

Figure 2. The labeling scheme adopted from Persistent Labeling

In terms of support for the new inserted node, new labels will be generated based on the following
rules [4]. Let C be a node to be inserted, while Node A and Node B are the sibling of Node C.
a) Node C (ci,cj) is inserted before Node A provided that no nodes before Node A. Label C =

(see Figure 3(a)).
b) Node C is inserted after Node B provided that no nodes after Node B

Figure 3(b)).
c) Node C is inserted between Node A and Node B. Label C = (ci,cj) can be computed as follows: ci = bi.

aj + ai. bj / d; cj = 2. aj. bj / d; where d is Highest Common Factor for (bi.aj + ai.bj) and (2.aj.
Figure 3(c)).

Based on the beautiful features of persistent labeling such as supports for the four hierarchical
relationships and the support for dynamic update, we adopt the labeling scheme in our approach.

4.2. s-XML Table Schema

In s-XML, there are two tables namely the ParentTable and the ChildTable. All nodes in the XML
will be shred into the two tables. The ParentTable stores all the internal nodes (annotated based on Persistent
Labeling elaborated earlier in Section 3.1), while the ChildTable maintains leaf nodes information. The
schemas of the tables are ellaborated as below.

ParentTable (IdNode, pName, cName, Level, LParent, SelfLabel)
a) IdNode - uniquely identify the nodes

ISSN: 2088-8708

Bridging XML and Relational Databases: An Effective Mapping Scheme based on ….

1 explains how the [n,d] and [np,dp] is assigned.

Figure 1. Explanation for [n,d] and [np,dp]

2 shows an example of labeling scheme based on Persistent Labeling
will be labeled as (0,[1,1]) where 0 represents the level and [1,1] represents the local label of the node. This
element does not have a parent label since the node is the origin of the XML tree. Next, the label for ‘book’ is
(1,[1,1],[1,1]). i.e., the ‘book’ reside in level 1, with the parent node labeled as [1,1] and ‘book’ is the first
child [1,1] among its sibling. Let us take another example. The ‘publisher’ is annotated with the label of (2,
[1,1],[5,1]), where 2 indicates that ‘publisher’ is in the level 2, [1,1] denotes the parent’s label of ‘publisher’
(which in this case the local label for ‘book’), [5,1] is the ordinal occurrence of ‘publisher’ among

child of ‘book’).

The labeling scheme adopted from Persistent Labeling

In terms of support for the new inserted node, new labels will be generated based on the following
to be inserted, while Node A and Node B are the sibling of Node C.

Node C (ci,cj) is inserted before Node A provided that no nodes before Node A. Label C =

Node C is inserted after Node B provided that no nodes after Node B. Label C = (ci,cj) = (bi + 1,bj) (see

Node C is inserted between Node A and Node B. Label C = (ci,cj) can be computed as follows: ci = bi.
aj + ai. bj / d; cj = 2. aj. bj / d; where d is Highest Common Factor for (bi.aj + ai.bj) and (2.aj.

Based on the beautiful features of persistent labeling such as supports for the four hierarchical
relationships and the support for dynamic update, we adopt the labeling scheme in our approach.

XML, there are two tables namely the ParentTable and the ChildTable. All nodes in the XML
will be shred into the two tables. The ParentTable stores all the internal nodes (annotated based on Persistent

eling elaborated earlier in Section 3.1), while the ChildTable maintains leaf nodes information. The
schemas of the tables are ellaborated as below.

(IdNode, pName, cName, Level, LParent, SelfLabel) where:
uniquely identify the nodes stored in the ParentTable (assigned based on breath

�

. (Samini Subramaniam)

241

2 shows an example of labeling scheme based on Persistent Labeling [4]. The root element
will be labeled as (0,[1,1]) where 0 represents the level and [1,1] represents the local label of the node. This

he node is the origin of the XML tree. Next, the label for ‘book’ is
(1,[1,1],[1,1]). i.e., the ‘book’ reside in level 1, with the parent node labeled as [1,1] and ‘book’ is the first

er’ is annotated with the label of (2,
[1,1],[5,1]), where 2 indicates that ‘publisher’ is in the level 2, [1,1] denotes the parent’s label of ‘publisher’
(which in this case the local label for ‘book’), [5,1] is the ordinal occurrence of ‘publisher’ among its sibling

The labeling scheme adopted from Persistent Labeling

In terms of support for the new inserted node, new labels will be generated based on the following
to be inserted, while Node A and Node B are the sibling of Node C.

Node C (ci,cj) is inserted before Node A provided that no nodes before Node A. Label C = (ai -1,aj)

. Label C = (ci,cj) = (bi + 1,bj) (see

Node C is inserted between Node A and Node B. Label C = (ci,cj) can be computed as follows: ci = bi.
aj + ai. bj / d; cj = 2. aj. bj / d; where d is Highest Common Factor for (bi.aj + ai.bj) and (2.aj.bj) (see

Based on the beautiful features of persistent labeling such as supports for the four hierarchical
relationships and the support for dynamic update, we adopt the labeling scheme in our approach.

XML, there are two tables namely the ParentTable and the ChildTable. All nodes in the XML
will be shred into the two tables. The ParentTable stores all the internal nodes (annotated based on Persistent

eling elaborated earlier in Section 3.1), while the ChildTable maintains leaf nodes information. The

stored in the ParentTable (assigned based on breath-first traversal).

 �

IJECE Vol. 2, No. 2, April 2012

242

b) pName-stores parent node name.
c) cName-maintains child name.
d) Level-maintains level information
e) LParent – maintains the parent label of the node which stores the reference of the parent lab
f) SelfLabel - maintains the self

Scenario

(a)

(b)

(c)

Figure 3. New labels generated due to inserti

Figure 4. The structure and sample data of s

ChildTable (IdNode, Level, pName, SelfLabel, LParent,Value)
a) IdNode - uniquely identifies the nodes stored in the ChildTable (assign

traversal).
b) Level - stores the level information of the node in the XML document.
c) pName - stores the element name of the parent node

2 : 239 – 246

stores parent node name.
maintains child name.

maintains level information
maintains the parent label of the node which stores the reference of the parent lab
maintains the self-label or local label of the node which is [n,d] in Persistent Labeling.

Technique to Generate Unique Label
Node C is inserted before Node A provided that no nodes before Node
A;

Label C = (ci,cj)
:- (ci,cj) = (ai -1,aj)

Node C is inserted after Node B provided that no nodes after Node B
after Node B;

Label C = (ci,cj)
:- (ci,cj) = (bi + 1,bj)

Node C is inserted between Node A and Node B

Label C = (ci,cj)
ci = bi. aj + ai. bj / d
cj = 2. aj. bj / d
 : where d is Highest Common Factor for
 (bi.aj + ai.bj) and (2.aj.bj)

Figure 3. New labels generated due to insertion in Persistent Labeling

Figure 4. The structure and sample data of s-XML

(IdNode, Level, pName, SelfLabel, LParent,Value) where:
uniquely identifies the nodes stored in the ChildTable (assigned based on breath

stores the level information of the node in the XML document.
stores the element name of the parent node

mapping

 ISSN: 2088-8708

maintains the parent label of the node which stores the reference of the parent label (IdNode).
label or local label of the node which is [n,d] in Persistent Labeling.

Node C is inserted before Node A provided that no nodes before Node

Node C is inserted after Node B provided that no nodes after Node B

on in Persistent Labeling

ed based on breath-first

IJECE

Bridging XML and Relational Databases: An Effective Mapping Scheme based on

d) SelfLabel - maintains the self
e) LParent- maintains the parent label of the node which stores the reference of the parent label (IdNode)

from the ParentTable.
f) Value- stores the value of the node

Figure 4 illustrates some sample data after the annotation and mapping processes
the initial triplets of Persistent Labeling (level, [parent label], [local label]) is shredded into three columns
namely, Level, LParent and SelfLabel.
determined from s-XML.

Parent

Ancestor

Sibling relationship

Level

4. EXPERIMENTAL DESIGN
4.1. Experimental Setup

We have implemented s-XML using IntelliJ IDEA Community Edition 9.0.1 using JDK 1.5.0 and
MySQL as the database. Experiments have been carried out on the
University of Washington XML repository [15]. All our experiments are performed on Acer Intel Pentium
dual-core processor T2390 with 160 GB HDD and 1GB DDR2. All numbers presented here are produced by
running the experiments five times and averaging the execution times of several consecutive runs.

4.2. Performance Results
Mapping to Relational Database

The first experiment was conducted to evaluate the efficiency the mapping scheme to map the XML
data to relational database. s-XML was compared against the existing mapping approaches such as the Edge,
Attribute and DTD schemes. The results of the experiments are shown in Figure 6.

The experimental results show that Edge approach took the longest time to map the XML data to
relational database, followed by Attribute and DTD mapping schemes. This is due to the fact that Edge
approach is only practical when smaller dataset is concern because
Edge table. This consequence will be an inverse when larger dataset is concern bcause it complicates the
mapping process and data management becomes inefficient. The delay in Attribute and DTD mapping
schemes are caused by the property of these schemes that is to create tables based on dictinct element names
that appear in an XML document and table creations depends on the cardinality of the elements in the DTD
document respectively. The s-
techniques and the data is well distributed among adequate number of tables whereby the number of the
tables and format of the tables are fixed regarless of the complexity of the XML document.

Query Processing

Table 1 shows the description on the query performed on the lineitem dataset stored in relational
database. Using relational database as the underlying storage, the query is written based on Structured Query
Language (SQL) command. The time taken to retrieve the
shows the performance comparison.

ISSN: 2088-8708

Bridging XML and Relational Databases: An Effective Mapping Scheme based on ….

1. Get LParent of Node 2 in ChildTable
2. Use LParent to trace idNode in ParentTable
3.Get pName from ParentTable based on the idNode

maintains the self-label or local label of the node node which is [n,d] in Persistent
maintains the parent label of the node which stores the reference of the parent label (IdNode)

stores the value of the node
Figure 4 illustrates some sample data after the annotation and mapping processes

the initial triplets of Persistent Labeling (level, [parent label], [local label]) is shredded into three columns
namely, Level, LParent and SelfLabel. Figure 5 illustrates how the hierarchical relationships could be

Parent-child relationship

Ancestor-Descendant relationship

Sibling relationship

Level
 1. Level information for non-leaf node is stored in ParentTable

2. Level for leaf node is maintained in ChildTable.

Figure 5. Relationship supported by s-XML

EXPERIMENTAL DESIGN

XML using IntelliJ IDEA Community Edition 9.0.1 using JDK 1.5.0 and
MySQL as the database. Experiments have been carried out on the lineitem dataset obtained from the
University of Washington XML repository [15]. All our experiments are performed on Acer Intel Pentium

core processor T2390 with 160 GB HDD and 1GB DDR2. All numbers presented here are produced by
nts five times and averaging the execution times of several consecutive runs.

Mapping to Relational Database
The first experiment was conducted to evaluate the efficiency the mapping scheme to map the XML

XML was compared against the existing mapping approaches such as the Edge,
Attribute and DTD schemes. The results of the experiments are shown in Figure 6.

perimental results show that Edge approach took the longest time to map the XML data to
relational database, followed by Attribute and DTD mapping schemes. This is due to the fact that Edge
approach is only practical when smaller dataset is concern because the entire document is loaded into single
Edge table. This consequence will be an inverse when larger dataset is concern bcause it complicates the
mapping process and data management becomes inefficient. The delay in Attribute and DTD mapping

caused by the property of these schemes that is to create tables based on dictinct element names
that appear in an XML document and table creations depends on the cardinality of the elements in the DTD

-XML mapping scheme performed the best due to its simple mapping
techniques and the data is well distributed among adequate number of tables whereby the number of the
tables and format of the tables are fixed regarless of the complexity of the XML document.

1 shows the description on the query performed on the lineitem dataset stored in relational
database. Using relational database as the underlying storage, the query is written based on Structured Query
Language (SQL) command. The time taken to retrieve the queries is depicted in Table 2 while Figure 7
shows the performance comparison.

1. Get LParent of Node 2 in ChildTable
2. Use LParent to trace idNode in ParentTable
3. Get the LParent of the located in ParentTable
4. Trace LParent using Step 4 until Node 1 is reached

1. Get LParent of a Node 2 from ChildTable
2. Use LParent to get idNode from ParentTable
3. If LParent of Node 2 is same with Node 2 (get LParent
 similar with Node 2) then Node 2 and Node 3 are siblings

�

. (Samini Subramaniam)

243

2. Use LParent to trace idNode in ParentTable
3.Get pName from ParentTable based on the idNode

label or local label of the node node which is [n,d] in Persistent Labeling.
maintains the parent label of the node which stores the reference of the parent label (IdNode)

Figure 4 illustrates some sample data after the annotation and mapping processes. From Figure 4,
the initial triplets of Persistent Labeling (level, [parent label], [local label]) is shredded into three columns

rchical relationships could be

XML using IntelliJ IDEA Community Edition 9.0.1 using JDK 1.5.0 and
lineitem dataset obtained from the

University of Washington XML repository [15]. All our experiments are performed on Acer Intel Pentium
core processor T2390 with 160 GB HDD and 1GB DDR2. All numbers presented here are produced by

nts five times and averaging the execution times of several consecutive runs.

The first experiment was conducted to evaluate the efficiency the mapping scheme to map the XML
XML was compared against the existing mapping approaches such as the Edge,

perimental results show that Edge approach took the longest time to map the XML data to
relational database, followed by Attribute and DTD mapping schemes. This is due to the fact that Edge

the entire document is loaded into single
Edge table. This consequence will be an inverse when larger dataset is concern bcause it complicates the
mapping process and data management becomes inefficient. The delay in Attribute and DTD mapping

caused by the property of these schemes that is to create tables based on dictinct element names
that appear in an XML document and table creations depends on the cardinality of the elements in the DTD

med the best due to its simple mapping
techniques and the data is well distributed among adequate number of tables whereby the number of the
tables and format of the tables are fixed regarless of the complexity of the XML document.

1 shows the description on the query performed on the lineitem dataset stored in relational
database. Using relational database as the underlying storage, the query is written based on Structured Query

queries is depicted in Table 2 while Figure 7

2. Use LParent to trace idNode in ParentTable
3. Get the LParent of the located in ParentTable
4. Trace LParent using Step 4 until Node 1 is reached

1. Get LParent of a Node 2 from ChildTable
2. Use LParent to get idNode from ParentTable

rent of Node 2 is same with Node 2 (get LParent
similar with Node 2) then Node 2 and Node 3 are siblings

 � ISSN: 2088-8708

IJECE Vol. 2, No. 2, April 2012 : 239 – 246

244

Table 1. Query description for liteitem dataset

Table 2. The SQL command and query retrieval time for Edge, Attribute, relational DTD

and s-XML approaches.
Approach Query1 Time (ms)

Edge select * from edgetable where data like ‘careful packages wake%’ 1033
Attribute select * from t where targetID = (select sourceID from L_COMMENT where data = ‘careful

packages wake%’)
315

DTD select * from L_COMMENT where data like ‘careful packages wake%’ 252
s-XML select parentName from childtable where value = ‘careful packages wake’. 218
Approach Query2 Time (ms)

Edge select sum(data) from edgetable where tag ='L_QUANTITY' 1646
Attribute select sum(data) from l_quantity 495
DTD select sum(data) from l_quantity 279
s-XML select sum(data) from childtable where parentName=’L_QUANTITY’ 310
Approach Query3 Time (ms)

Edge select ship.data from Edgetable ship, Edgetable commentT, Edgetable t, Edgetable table1
where ship.tag='L_SHIPINSTRUCT'
and commentT.tag='L_COMMENT'
and t.tag='T' and table1.tag='table'
and table1.targetID=t.sourceID
and t.targetID = ship.sourceID
and ship.sourceID = commentT.sourceIDand commentT.data like 'even accounts cajole slyly%'

5346

Attribute select ship.data from l_shipinstruct3 ship, l_comment3 comm, t3 t, table3 tb
where tb.targetID = t.sourceID
and t.targetID = comm.sourceID
and comm.sourceID = ship.sourceID
and comm.data like 'even accounts cajole slyly%'

921

DTD select t.L_SHIPINSTRUCT from t1 t, l_comment1 cm, table tb where tb.id = t.parentID and
t.parentID = cm.parentID and cm.text = 'even accounts cajole slyly'

537

s-XML select value from childtable where parentLabel = (select selfLabel from parenttable where
parentName = 'L_SHIPINSTRUCT' and parentLabel = (select parentLabel from parenttable where
selfLabel = (select parentLabel from childtable where value = 'even accounts cajole slyly')))

591

Figure 6. Mapping XML nodes into the relational

databases

Figure 7. Performance Evaluation Results

From the results obtained, we observed the following:

a) For simple query, Query1, the performance of the Relational DTD, Attribute and s-XML approaches are
comparable while the Edge approach performs the worst. All approaches perform only simple table scan.
In the Edge approach, all data are shredded into a single table. As such, the table scan operation on the
Edge approach is rather slow due to its huge number of rows.

b) For aggregated query, Query2, the Relational DTD and the s-XML approaches performed the best.

7569680
6687196

5035045

3906848

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

T
im

e
(m

s)

Mapping Schemes

Edge

Attribute

DTD

s-XML

1533 1646

5346

315 495
921

252 279
537

278 310
525

0

1000

2000

3000

4000

5000

6000

Query 1 Query 2 Query 3

Time (ms)

Edge Attribute DTD s-XML

Query
No.

Query Description

Query1 Retrieve the label name for the value like ‘careful packages wake’
Query2 Calculate total quantity of orders in the XML document
Query3 Retrieve the ship instruction for the items with the comment like

‘even accounts cajole slyly’

IJECE ISSN: 2088-8708 �

Bridging XML and Relational Databases: An Effective Mapping Scheme based on …. (Samini Subramaniam)

245

c) Relational DTD performance degrades for queries involving complex/assorted combinations (especially
on Query3). Since Relational DTD solely depending on the occurrences of elements in the dataset, it
performed slower for complex queries due to multiple joins required. Unlike Relational DTD, the
number of tables generated in s-XML approach is fixed regardless of the frequency occurrence of the
element. As for the Edge approach, the performance is the worst as it involves several self-joins within
the huge table itself. Since joins are the most expensive evaluations in relational database, the query
processing on the database stored with the Edge approach was the worst.

 Figure 8. Insertion of new nodes

Figure 9. Deletion of nodes

Dynamic Update
The next experiment was conducted to evaluate the efficiency of the labeling schemes in terms of

dynamic update, to be exact, measuring the time taken to insert and delete bulk of nodes from the lineitem
dataset. Since the labeling scheme in the Relational DTD, Edge and Attribute approach do not support
dynamic update, we employ ORDPATH [10] and LSDX [2] as the labeling scheme for comparison.
Henceforth, ORDPATH, LSDX and Persistent labeling are known as ORDPATH-map, LSDX-map and s-
XML respectively. Figure 8 shows the experimental results for new insertion of nodes into lineitem dataset.

LSDX-map took the longest time to generate new labels for newly inserted nodes. This is for the
reason that LSDX causes collision during new label generation and also complexity in mapping process.
Furthermore, the size of the labels reduces the efficiency of this labeling scheme as compared to s-XML. On
the other hand, the performance of ORDPATH-map is comparable to s-XML due to simple calculation for
new label generation and faster mapping to the relations. s-XML performed the best due to controlled
labeling size regardless of the complexity of the XML document and dynamic update which is an added
advantage compared to other approaches.

Besides that, these labeling schemes were also evaluated in terms of their robustness during node
deletion from lineitem dataset and their results were recorded in Figure 9. LSDX-map took the longest time
to delete the nodes and update the new document followed by ORDPATH-map and s-XML. The
performance of ORDPATH-map and s-XML is analogous since they require least time to delete the nodes
and update the document. The ever-increasing label size of ORDPATH-map causes its performance to
degrade as compared to s-XML which maintains the labeling format in any circumstances.

5. CONCLUSION

XML document requires robust and seamless mapping approach which allows for efficient and accurate
data shredding into relational database. In this paper, we proposed a new mapping scheme named s-XML
which is based on Persistent Labeling scheme to support structural queries retrieval efficiently. The
experimental evaluations revealed that s-XML processed query efficiently, especially on complex queries as
compared to Relational DTD, Attribute and Edge approaches. In addition, the performance of s-XML was
better than ORDPATH-map and LSDX-map in terms of the support during dynamic update.

REFERENCES
[1] M. Atay., et al., “Efficient schema-based XML-to-Relational Data Mapping,” Information Systems, vol. 32, no. 3,

pp. 458-476, 2007.

0

200

400

600

800

1000

Line Item

T
im

e
(s

)

LSDX-Map ORDPATH-Map
s-XML

0

5

10

15

20

25

Line Item
T

im
e

(s
)

LSDX-Map ORDPATH-Map s-XML

 �

IJECE Vol. 2, No. 2, April 2012

246

[2] M. Duong, and Y. Zhang, “LSDX: New Labeling Scheme for Dynamically Updating XML Data”,
Australian

 Database Conference, pp. 185
[3] D. Florescu, and D. Kossman, “Storing and Querying XML Data Using an RDBMS”,

Bulletin, vol. 22, no. 3, pp. 27-
[4] A. Gabillon, and M. Fansi, “A Persistrent Labeling Scheme for XML and tree Database”,

115, 2006
[5] T. Harder, et al. “Node Labeling Schemes for Dynamic XML Documents Reconsidered”,

Engineering, 60, pp. 126-149, 2007.
[6] S.C. Haw, and , C.S. Lee, “Node Labeling Schemes in XML Query Optimization: A Survey and Tren

Technical Review, pp. 88-99, 2009.
[7] L. Khan, and Y. Rao, “A Performance Evaluation of Storing XML Data in Relational Database Management

Systems”, Proc. of the Workshop on Web Information and Data Management
[8] I. Nekrestyanov, et al. “An Analysis of Alternative Methods for Storing Semistructured Data in Relations”,

Notes In Computer Science, 1884, pp 354
[9] M.F. O’Connor, and M. Roantree, “Desirable Properties of XML Update Mechanisms”,

Workshop, 2010.
[10] P. O’Neil, et al. “ORDPATHS: Insert
[11] V. Sans, and D. Laurent, “Prefix Based Numbering Schemes for XML: Techniques, Applications and

Performances”, Proc. Of VLDB
[12] B.J. Shin, and M. Jin, “Association Inlining for Mapping XML DTDs to Relational Tables”,

Computer Science, 3046, pp 849
[13] F.Tian, et al. “The Design and Performance Evaluation of Alternative XML Storag

SIGMOD, pp 5-10, 2001.
[14] Tatarinov, et al. “Storing and Querying Ordered XML Using a Relational Database System”,

pp. 204-215, 2002.
[15] UW XML Repository, http://www.cs.washington.edu/research/ xml/data

BIOGRAPHY OF AUTHORS

Samini Subramaniam’s research interest are in Relational Database Management System
(RDBMS), XML processing and Query processing and optimization.

Su-Cheng Haw’s
processing and optimization, Data Modeling and Design, Data Management, Data Semantic,
Constraints & Dependencies, Data Warehouse, E

Poo Kuan Hoong’s
systems. He is a member of IEICE, IEEE and ACM.

2 : 239 – 246

M. Duong, and Y. Zhang, “LSDX: New Labeling Scheme for Dynamically Updating XML Data”,

, pp. 185- 193, 2005.
D. Florescu, and D. Kossman, “Storing and Querying XML Data Using an RDBMS”,

-34, 1999.
A. Gabillon, and M. Fansi, “A Persistrent Labeling Scheme for XML and tree Database”,

T. Harder, et al. “Node Labeling Schemes for Dynamic XML Documents Reconsidered”,
149, 2007.

S.C. Haw, and , C.S. Lee, “Node Labeling Schemes in XML Query Optimization: A Survey and Tren
99, 2009.

L. Khan, and Y. Rao, “A Performance Evaluation of Storing XML Data in Relational Database Management
”, Proc. of the Workshop on Web Information and Data Management, pp 31-38, 2001

ov, et al. “An Analysis of Alternative Methods for Storing Semistructured Data in Relations”,
, 1884, pp 354-361, 2002.

M.F. O’Connor, and M. Roantree, “Desirable Properties of XML Update Mechanisms”,

P. O’Neil, et al. “ORDPATHS: Insert-Friendly XML Node Labels”, Proc. Of ACM SIGMOD
V. Sans, and D. Laurent, “Prefix Based Numbering Schemes for XML: Techniques, Applications and

”, Proc. Of VLDB, pp.1564-72, 2008.
B.J. Shin, and M. Jin, “Association Inlining for Mapping XML DTDs to Relational Tables”,

, 3046, pp 849-858, 2004.
et al. “The Design and Performance Evaluation of Alternative XML Storage Strategies”,

Tatarinov, et al. “Storing and Querying Ordered XML Using a Relational Database System”,

http://www.cs.washington.edu/research/ xml/datasets/www/repository.html.

Samini Subramaniam’s research interest are in Relational Database Management System
(RDBMS), XML processing and Query processing and optimization.

Cheng Haw’s research interests are in XML Databases and instance storage, Query
processing and optimization, Data Modeling and Design, Data Management, Data Semantic,
Constraints & Dependencies, Data Warehouse, E-Commerce and Web services.

Poo Kuan Hoong’s research interests are in the areas of peer-to-peer networks and distributed
systems. He is a member of IEICE, IEEE and ACM.

 ISSN: 2088-8708

M. Duong, and Y. Zhang, “LSDX: New Labeling Scheme for Dynamically Updating XML Data”, Proc. Of 16th

D. Florescu, and D. Kossman, “Storing and Querying XML Data Using an RDBMS”, IEEE Data Engineering

A. Gabillon, and M. Fansi, “A Persistrent Labeling Scheme for XML and tree Database”, Proc. of ACI, pp. 110-

T. Harder, et al. “Node Labeling Schemes for Dynamic XML Documents Reconsidered”, Data & Knowledge

S.C. Haw, and , C.S. Lee, “Node Labeling Schemes in XML Query Optimization: A Survey and Trends”, IETE

L. Khan, and Y. Rao, “A Performance Evaluation of Storing XML Data in Relational Database Management
38, 2001

ov, et al. “An Analysis of Alternative Methods for Storing Semistructured Data in Relations”, Lecture

M.F. O’Connor, and M. Roantree, “Desirable Properties of XML Update Mechanisms”, Proc. of EDBT/ICDT

Proc. Of ACM SIGMOD, pp.903- 908, 2004.
V. Sans, and D. Laurent, “Prefix Based Numbering Schemes for XML: Techniques, Applications and

B.J. Shin, and M. Jin, “Association Inlining for Mapping XML DTDs to Relational Tables”, Lecture Notes In

e Strategies”, Proc. of the ACM

Tatarinov, et al. “Storing and Querying Ordered XML Using a Relational Database System”, Proc. of SIGMOD,

sets/www/repository.html.

Samini Subramaniam’s research interest are in Relational Database Management System

XML Databases and instance storage, Query
processing and optimization, Data Modeling and Design, Data Management, Data Semantic,

Commerce and Web services.

peer networks and distributed

