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1. INTRODUCTION

Faults lead to the degradation of the process dstperformance, because of changes in physical
characteristics. Fault detection and isolation {Fafldynamical systems is used to assure systeabiiél
and safety. FDI has obtained more and more attemmionany areas such as nuclear systems, processico
and aerospace. The high reliability required incpeses has created the necessity of early faillatestion
and diagnosis. In addition, the use of autonomgsgems with minimum human interferences, inflates t
importance of systematic FDI. Existing FDI appraashre generally separated into model-based andlmod
free approaches. Model-based approaches are basdbeomathematical model of the process. Such
approaches include different methods as parametisation, state observation or parity equatidrise
parameters estimation method reflect the occurreictaults as changes in the values of the physical
parameters, many literature deal with the use afigtive approaches to estimate the physical patars,
the main problem in fault diagnosis with the pagtens estimation is the inter effect of each faatturrence
in the estimation of the other parameters. Thiskwmse the quality of nonlinear mapping of the ANHiShe
parameters estimation for nonlinear systems, aedtlus large Competence of learning in the faulttefe
decoupling from the estimation of others paransef€his work presents and describes an innovatathoal
that uses ANFIS estimators and includes it in disggsystem for failure detection.

The failures in the ACS of spacecraft can be cabgeahalfunctions in components, actuators, and
sensors due to unexpected interference or gradiad af system components. These failures couldltrés
higher energy consumption, loss of control and aeint operating problems. With increasing emphasis
placed these days on energy efficiency and equipmadiability, there is a need for the development
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robust FDI tools that are capable of detecting ianthting any sensor, actuator or system compofaeits,
so that remedial actions and recovery procedurelsl d@ taken as soon as possible [2].

In the present paper, a fault diagnosis approaatetect and estimate ACSs components faults is
presented. The proposed solution provides a framewm detect, isolate, and estimate various fairts
system components, using Adaptive Neural Fuzzyrémige Systems Parameter Estimators (ANFISPES).
The reminder of the current paper is organizedodsws: Section 2 reviews the principle scheme afitf
diagnosis system. Section 3 highlights dynamic rindef the reaction wheel actuators. Section 4¢ulises
simulation results. Conclusions are drawn in Sechio

2. FAULT DIAGNOSISSYSTEM USING ANFISPARAMETERSESTIMATOR

The proposed scheme for FDI, illustrated in theuriigl, is structured in 3 parts. The first part is
composed of ANFIS parameter estimator's bank thatluates specific parameters according to input
measurements and command signals. These pararmieterge when faulty behaviors occur. The second part
is composed of nonlinear faulty models that work the estimated output according to the parameter
evaluation. The third part is a usual FDI blockt tthetects and isolates faults.
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3. ANFISARCHITECTURE

This section presents ANFIS parameters estimatxé-[SPEs). ANFISPEs estimate the physical
parameters of the considered system based on giyert—output patterns. ANFIS architectures can be
employed to model nonlinear functions, identify love nonlinear components in a control system, and
predict a chaotic time series [3]. As a consequemee use ANFIS structures to generate signals that
represent the faulty behaviors of the concernetésysaccording to the changes that occur in sorysigsi
parameters.

The usual ANFIS architecture uses a feed-forwatd/ok to search for fuzzy decision rules. Using
a given input—output data set, ANFIS creates amrzyfunference system (FIS) for which membership
function. Parameters are tuned using either a pamgagation algorithm alone or a combination ofaakb
propagation algorithm and a least-squares methach & hybrid structure is useful to design FIS &atiog
to the collected data. For simplicity, we suppds the FIS has two inputs x and y and one outptihé
Takagi and Sugeno fuzzy models, a common rule st two fuzzy “if-then rules” has the following
expression (Figure 2):

{ Rulel:if (xis A))and (yis B,)then (f, = px+ qy +1r,) (1)

Rule2:if (xis A,)and (yis B,)then (f, = p,x+ g,y +r,)

whereA;, A, andB,, B, are respectively fuzzy sets of input premise \deisx andy andpy, g, r1 andp,, ds,
r, are parameters of the consequent or output veriabl
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Figure 2. FIS with two rules

Let defineni(x) and ts1(y) as the membership values respectively fois“A;” and ‘y is B,” and work out
Ui=pa1(X) Me1(X) Similarly pa(X) and 142(y) are the membership values for is A,” and ‘y is B,” and
U= ax(X) Meo(X). Then, the output is obtained as an aggregatidineofjualified consequents:

f =u1f1+u2f2 (2)
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Fig. 3 ANFISPE architecture

The Figure 3 depicts the general structure of ANMSBere the square nodes represent constant
nodes and the circle ones are adaptive nodes, vgawaeneters are changed during the training proddss
ANFIS structure is composed of functional blockatthre generated using a five layers network as it i

described in the following section [4]:
3.1. Five-layer network ANFIS

Layer 1 (input layer): Each node of this layer gates membership grades for inputs.

Ol =y, (x)i=12 3)

O = pg _,(y)i =34 4)

wherex, y are the crisp inputs to nodeand A, B are the linguistic labels characterized by appadpri
membership functiongai(X), Uei(X) respectively. Due to smoothness and concise patadtie Gaussian and
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bell-shaped membership functions are increasinglpufar for specifying fuzzy sets. In this layergth
functions of the nodes are Gaussian membershigifursc(GaussMF):

/MJX)=eﬂ)—(X_qj
a

Ho (X) = exp —(y‘diJ

i =172 ()

e.

with the set of parameteréai,di , G, ,ei}. as the values of these parameters change, thshagpled
functions vary accordingly.

Layer 2 (rule layer): In the second layer, the ANRerator is used to work out the output of the eomed
rule. This output represents the firing strengté. (degrees to which the antecedent part of theyfuzle is
satisfy) and shapes the output function for the.rblence the outputs and y of this layer are the products
of the corresponding degrees from Layer 1

U = U (X) Mg (X),i =12and j=12 (6)

Layer 3 (average layer): In the third layer, themmbjective is to calculate the firing strengthisgfor each
rule. Consequently, the output of layer 3 is themadized firing strength:

ui= ———i =12 @)
Ul + U2

Layer 4: (consequent layer): The fourth layer cotepuhe contribution of each rule to the overals Fl
output. The dimension of this layer correspondthonumber of fuzzy rules in the system. Every
node in this layer is a square node with a lineacfion whose form is defined by:

of=u f,=ui(px+qy+r)i=12 ®)

whereU, are the output from the previous layg, g, ri}are the parameters of the linear combination. Layer

5 (output layer). The single node computes the alveyutput by summing all the incoming signals.
Accordingly, the defuzzification process transfothms fuzzy result into a crisp output:

f=>»uf =uf +u:= —f+ — f 9
z|| i 1 2 u, +u, 1 u +u, 2 9)

The ANFIS networks need to be trained with theem#td data. The training phase is a process that
determines the optimum value of parameters soAN&1S successfully fits the training data [5].
The proposed ANFIS combines two techniques in updaiarameters. For premise parameters that define
membership functions, ANFIS employs a gradient-Bag@imization algorithm. For consequent, paranseter
that specify the output equations, ANFIS uses #astlsquares method. This approach is thus cajleddh
learning method [6] since it combines the gradiggeent method and the least-squares method.

a Hybrid learning algorithm
When the premise parameters are not constantetlretsspace becomes large, and the convergence
of training may be slow. The hybrid-learning alglom is adopted to solve this problem. This algonitis a
two-step process. [7]:
(1) The consequent parameters are identified udiegldast-squares algorithm after the initial premis
parameters are determined, based on the equation:

f = (U1 X)p,+ (U1 y)a, + (Ui)r, +(Uz X) P, + (U2 y) @, + (u2) 1, = AX (10)
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The consequent parametgis, q,.r,, p,.q,,r,} are summed up in of column veckirThe matrix A
and vector f result from a training set of skz€(x;, v, f(%, y)), I = 1,....K:

al X Ijlyl al EJzXl azyl az f(X1,y1)

I A (11)

U % Glyk U szk Dzyk Uz f(% ¥i)

The optimal approximatioX of the consequent vectiris obtained with:

X = (ATA) AT (12)
and the least mean square errom"mHAX - fH for X anywhere in search space.

(2) This resulting error is transmitted from thapu of layer 4 to the input of layer 4 reversefsbd on BP
algorithm of feed-forward neural network. Such backpagation process is used to update the premise
parameters with gradient-descent method, and caesdly to change the shape of membership
functions.

b Faulty model design

In this section, we describe the system’s nonlirfeafty model, it is modeled by the state space
equation (13) where x is the state vector, f isdtage function, h is the output function and drespnts the
system disturbances that are assumed to be a lbaigwl.

{)‘(: f(xu, p)+d 13)

y=h(x)

In this paper, following the work of Iserman [8ystem component faults are reflected in the
physical systems parameter degeneration. Hencés faaturrence is represented by changes in thé faul
parameter vector's of the system. When the system is healfhyakes the nominal value of the physical
parameters. In faulty cases, the valu@ diepends on the way that the faults disturb theerysWe assume
in this paper that faults affect the physical pagters in additive form. The faulty model given lguation
(13) is used to transform the problem of nonlinéault diagnosis in an on-line nonlinear parameter
estimation problem, for which unknown fault paraemst are estimated using system inputs and
measurements.

3.2. Fault Detection And Estimation With ANFISPEs

The proposed fault detection scheme is achievetlyfiby the estimation of the fault parameter
vector, using system input-output measurementsfddr isolation, we propose to use a bank of patem
estimators where each estimator is designed fanglesparameter fault as described below. Consider
general parameter fault model given in equation) (&i8h n fault parameters (length pf). We extract n
single parameter model from the model (13). Thekbaihn parameter estimators is designed on each
separate fault model given by equation (14), whbedth parameter estimator will essentially estimat th
ith fault parameter.

x=f(x,u, p')+d
y=h(x)

For nonlinear systems, the parameter estimatiocoimmonly achieved though the Extended
Kalman Filter (EKF) [9] used as a standard techaifpr recursive estimation. Such method suffersnfro
suboptimal performance and sometimes model divemedue to errors introduced by first-order
approximation of the nonlinear dynamics. To overeothis limitation in parameter’s estimation for a
disturbed nonlinear system, we integrate the ANKitB the nonlinear dynamical model of the systeme T

(14)
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estimation of parameters is then based on a miatiniz of instantaneous output estimation error. dt@ce
of ANFIS is motivated by their good approximatiamperties for nonlinear systems.

The bank of ANFISPEs is composed of two subsystéhesnonlinear faults models given by (14)
employed for state estimation and the ANFISPE ufedadaptively approximate the nonlinear Fault
parameter function. Therefore, at each time instaath ANFISPE in the bank should perform the the
estimation of thep element in the faulty parameter vector, that regmé the estimation dth fault parameter
using the current and previous instant value ofiis@nd outputs measurements respectively.

4. DYNAMIC MODELING OF REACTION WHEEL ACTUATORS

To judge the performance of this fault diagnosieesse, we consider the problem of detection,
isolation and estimation of faults in Reaction Whaegtuators components, in a satellites Attitudent@u
System (ACS). Developing an accurate and effidiealt diagnosis in reaction wheel components became
challenging problem due to the inherent nonlingaoit reaction wheel and satellite attitude dynan@os!
presence of disturbances exerting on satellite bdlg selection of the reaction wheel platform inated
by stringent requirements on satellites to opematenomously in presence of faults in sensors aaatsi and
components. Moreover, the large number of repoptgolications [10], [11], [12] on this topic overeth
recent years provides further evidence of the itgmme of the application. To assess the performahoer
proposed FDI scheme in a near-realistic environmeatuse the MATLAB-Simulink tools to develop an
accurate simulation model of a 3-axis stabilizeelite.
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The simulation model consists of the well-known Inwear satellite attitude dynamics [13], a high
fidelity nonlinear model of the reaction wheel [I4]d decentralized PID controllers that stabillze ¢closed-
loop system so that the control input signals drel dtate vector remain bounded prior to and after t
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occurrence of a fault. Furthermore, nonlinear Eatansformations are applied to transform the kegel
angular velocities to Euler angle rates, namely; ptch, and yaw. The high-fidelity model of a ctian
wheel (RW), given in the block diagram in Figureidgorporates all the nonlinearities as well agriml
disturbances that are present in a real RW actusitar closed-form nonlinear state-space representaf a
reaction wheel model may be expressed as follows:

|. Gda)d[wl(lbus’a))_l/lB(a))]_wdlm Gda)d
|: C():| ) %[Ktl m(1+ B¢1(a),t)) - Tcl/fz (Cd) -T,wt C¢2 (a),t)] + 0 com (15)

wherel,, (the current) and (the angular velocity) are the measured staté®eaftion Wheel Vo, is the
input command voltage signal of RW, generated leyRID controller in the closed-loop attitude cohtro
systemaps, ¢ ¢ are nonlinear functions modeling EMF torque limti coulomb friction, and speed limiter
subsystems, respectively,,s a highly nonlinear function of states and the bokageVp,s andel @2 are
representing torque ripple and cogging respectii/edy. The objective is to detect, isolate andreste the
severity of possible faults in RW components uskegction wheel signals.

Thus, measurements of RW current and angular \tgltmjether with the wheel command voltage
comprise the input vector of the ANFISPE. Our otijecis to detect, isolate and estimate the faultsvo
components of reaction wheel, bus voltage Vbusd, rmotor gain, kt , both have been identified asomaj
sources of faulty behavior in reaction wheels [14]should be accentuated. The corresponding faulty
behavior can be represented as an additional sigrthke form of a single-parameter fault model éarch
physical parameter (single fault case) given infttlewing equation [14].

5. SIMULATION RESULTS

The simulations have been performed by using neatirmodels of the reaction wheel and the
attitude dynamics of a 3-axis stabilized satellitdie closed-loop satellite attitude control systems
stabilized using three decentralized PID contrellihe simulation data are obtained from the clésed
ACS of satellite simulation, with a run-time of 20 Many reference steps are commanded to théditeaitel
the Pitch channel. The satellite body is undemaean torque disturbance action with the maximummof
10-4 N-m. The nonlinear model in the healthy mdde=(0.029, Vbus =24V), the parameters of the ieact
wheel are adopted from Bialke [14] for the ITHACGSgandard type ‘A’ reaction wheels. Firstly in this
simulation the system Submit to an irregular favith a strong amount over the] 450 950] time ingrin
the motor gain. In consequence, we suppose thdatiits affect the motor parameter in addifiven as
follows:

)
I

0.029 0 <t <450
K, =0.014 450 <t < 950

K, =0.029 950 <t < 2000

(16)

The results of our simulation are depicted in figere 5 and figure 6 we can show the effect of the
injected fault in the behavior of the reaction whaetuator in the measurement values of the wheglgular
velocity degradation and the motor’s current constion. We note the significant impact of the intnodd
motor gain faults on the reaction wheel states. Kh&NFISPE provide a good estimation of the effective
motor gain value we can show the close match betwee injected and the estimated motor gain value
during all the concerned interval in the figurenTgreover the estimation &f, s value do not diverge from
the effective one and thg,,s ANFISPE provide a good estimation. So the effé¢heK; fault doesn’t touch
the efficiency of thé/, s ANFISPE as it can be seen in the figure 8 in thdded time interval.

Next, in time interval [950 1450] we inject the nioad values of the RW’s parameters in order to
obtain the healthy behavior of the system and we fhe healthy states of the RW actuator. In thievio
time interval [1450 2000] the satellite submit to additive form of fault, the following equationpresent
the Bus Voltage behavior:
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Vs = 24 0<t < 1450
V,,. =18.4 1450 < t <2000 (17)

As can be seen from the Figure 5 and 6, the memsuts of RW states suffer clearly from Wge
drop and the behavior of the actuator become degdrathtes. Th&; ANFISPE’s estimated value doesn’t
become infected by the,,s drop and the performance of this estimator cagectdhe effect of th&/,s fault
occurrence as it can be shown in the figure 7héndther ANFISPE we can see from the figure 8 tiat
estimated value oV s present a very close match with the injected amkthe error of estimation can be
neglected, we can see that the estimation foll@ndtlop of the Bus Voltage as well as required.
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6. CONCLUSION

In this research, a new solution based on the hturay inference system (ANFIS) is proposed and
presented to achieve the objectives of fault dietlectsolation in a satellite’s ACS nonlinear systaith the
states measurement. This approach is based on WF¥SAparameter estimators where each fault paramete
is representative of a specific kind of system congmt fault. Such method allows fault isolation hwit
minimum residual signal processing. Simulation lssshow the effectiveness of this method in ediiona
of the effective value of physical parameters,vad types of component faults in reaction wheel aitits of
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a satellite’s attitude control system. Consequellyfault diagnosis and estimation of two types of
component faults. Inferential physical parametdyseover is a very effective tool to detect the onadtion

of nonlinear satellite’s ACS. The learning abildf/the adaptive neural fuzzy inference system alow to
decoupling the effect of each fault from the estiores of the others and the results obtained pteseny
interested tools for the faults isolations. Moregvhe time processing for fault diagnosis becomesry
small as possible.

REFERENCES

[1]. E. Sobhani-Tehrani, K. Khorasani, S. Tafazoli, DyiaNeural Network-based Estimator for Fault Diagjsan
Reaction Wheel Actuator of Satellite Attitude Contggistem, Proc. Int. Joint Conf. on Neural Netwops, 2347-
2352,2005.

[2]. N. Tudoroiu and K. Khorasani. Fault Detection AbDéhgnosis For Reaction Wheels Of Satellite’'s At#u
Control System Using A Bank Of Kalman Filters, Padc¢he 2005 IEEE Conf on Control Applications: 0-7803
9029-6

[3]. J.S.R. Jang, : ANFIS adaptive-network-based funfgrénce system, IEEE Transactions on Systems, klaah,
Cybernetics 23 (1993)665-685.

[4]. Fi-John Chang, : Adaptive neuro-fuzzy inferencstem for prediction of water level in reservoir vathces in
Water Resources 29 (2006) 1-10

[5]. Jang JSR, Sun CT, Mizutani E. Neuro-fuzzy and softiping: a computational approach to learning and
machine intelligence. N.J: Prentice Hall; 1997.

[6]. [Zuperl Uros Adaptive network based inference exysfor estimation of flank wear in end-milling. joal of
materials processing technology 209 (2009) 15043151

[7]. Yuang-Shung Lee, Tsung-Yuan Kuo, Wei-Yen Wang. Fuxdeural Network Genetic Approach to Design the
SOC Estimator for Battery Powered Electric Scoot@@42lEEE: 2759-27657

[8]. Isermann, : Fault diagnosis of machines via paramestimation and knowledge processing - a tutgégder,
Automatica, vol. 29, No. 4, pp. 815-835, 1994 (b).

[9]. S. Haykin, Kalman filters, in: S. Haykin (Ed.), IKaan filtering and neural networks, Wiley/Intersuie, New
York, pp. 1-22, 2001.

[10]. E. Sobhani-Tehrani, K. Khorasani, S. Tafazoli, “@gmic Neural Network-based Estimator for Fault Diagja in
Reaction Wheel Actuator of Satellite Attitude Cont®jlstem,” Proc. Int. Joint Conf. on Neural Networgs.
2347-2352, 2005.

[11]. N. Tudoroiu and K. Khorasani, “Fault detection atidgnosis for reaction wheels of satellite’s attéucontrol
system using a bank of Kalman filters,” Int. Syrap.Signals, Circuits and Systems, vol. 1, pp. 198-2005.

[12]. H. A. Talebi and R.V. Patel, “An Intelligent Fauleiction and Recovery Scheme for Reaction WheelaAatof
Satellite Attitude Control Systems,” IEEE Conf. @antrol Applications, pp. 3282 — 3287, 2006.

[13]. M. J. Sidi, Spacecraft Dynamics and Control : Adfcal Engineering Approach, New York, NY, Cambridge
University Press, 1997.

[14]. B. Bialke, :High fidelity mathematical modeling ofaaion wheel performance, in 21st Annual American
Astronautical Society Guidance and Control Confeeeffrebruary 1998. AAS paper 98-063.

IJECE Vol. 2, No. 2, April 2012: 166 — 174



