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 This paper presents a new and efficient Adaptive Neural Fuzzy Inference 
Systems approach for satellite’s attitude control systems (ACSs) fault 
diagnosis. The proposed approach formulates the fault modelling problem of 
system component into an on-line parameters estimation The learning  ability 
of the adaptive neural fuzzy inference system allow as to decoupling the 
effect of each fault from the estimation of the others.  Our solution provides a 
method to detect, isolate, and estimate various faults in system components, 
using Adaptive Fuzzy Inference Systems Parameter Estimators (ANFISPEs) 
that are designed and based on parameterizations related to each class of 
fault. Each ANFISPE estimates the corresponding unknown Fault Parameter 
(FP) that is further used for fault detection, isolation and identification 
purposes. Simulation results reveal the effectiveness of the developed FDI 
scheme of an ACSs actuators of a 3-axis stabilized satellite. 
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1. INTRODUCTION 

Faults lead to the degradation of the process or to its performance, because of changes in physical 
characteristics. Fault detection and isolation (FDI) of dynamical systems is used to assure system reliability 
and safety. FDI has obtained more and more attention in many areas such as nuclear systems, process control, 
and aerospace. The high reliability required in processes has created the necessity of early failures detection 
and diagnosis. In addition, the use of autonomous systems with minimum human interferences, inflates the 
importance of systematic FDI. Existing FDI approaches are generally separated into model-based and model-
free approaches. Model-based approaches are based on the mathematical model of the process. Such 
approaches include different methods as parameters estimation, state observation or parity equations. The 
parameters estimation method reflect the occurrence of faults as changes in the values of the physical 
parameters, many literature deal with the use of qualitative approaches to estimate the physical parameters, 
the main problem in  fault diagnosis with the parameters estimation is the inter effect of each fault occurrence 
in the estimation of the other parameters. This work use the quality of nonlinear mapping of the ANFIS in the 
parameters estimation for nonlinear systems, and use the large Competence of learning in the fault efect 
decoupling  from the estimation of others parameters. This work presents and describes an innovative method 
that uses ANFIS estimators and includes it in diagnosis system for failure detection. 

The failures in the ACS of spacecraft can be caused by malfunctions in components, actuators, and 
sensors due to unexpected interference or gradual aging of system components. These failures could result in 
higher energy consumption, loss of control and equipment operating problems. With increasing emphasis 
placed these days on energy efficiency and equipment reliability, there is a need for the development of 
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robust FDI tools that are capable of detecting and isolating any sensor, actuator or system component faults, 
so that remedial actions and recovery procedures could be taken as soon as possible [2].  

In the present paper, a fault diagnosis approach to detect and estimate ACSs components faults is 
presented. The proposed solution provides a framework to detect, isolate, and estimate various faults in 
system components, using Adaptive Neural Fuzzy Inference Systems Parameter Estimators (ANFISPEs). 
The reminder of the current paper is organized as follows: Section 2 reviews the principle scheme of fault 
diagnosis system. Section 3 highlights dynamic modeling of the reaction wheel actuators. Section 4 discusses 
simulation results. Conclusions are drawn in Section 5. 

 
 

2. FAULT DIAGNOSIS SYSTEM USING ANFIS PARAMETERS ESTIMATOR 
The proposed scheme for FDI, illustrated in the figure 1, is structured in 3 parts. The first part is 

composed of ANFIS parameter estimator’s bank that evaluates specific parameters according to input 
measurements and command signals. These parameters change when faulty behaviors occur. The second part 
is composed of nonlinear faulty models that work out the estimated output according to the parameter 
evaluation. The third part is a usual FDI block that detects and isolates faults. 

 
 

 
 
 

3. ANFIS ARCHITECTURE 
This section presents ANFIS parameters estimators (ANFISPEs). ANFISPEs estimate the physical 

parameters of the considered system based on given input–output patterns. ANFIS architectures can be 
employed to model nonlinear functions, identify on-line nonlinear components in a control system, and 
predict a chaotic time series [3]. As a consequence, we use ANFIS structures to generate signals that 
represent the faulty behaviors of the concerned systems according to the changes that occur in some physical 
parameters.  

The usual ANFIS architecture uses a feed-forward network to search for fuzzy decision rules. Using 
a given input–output data set, ANFIS creates an fuzzy inference system (FIS) for which membership 
function. Parameters are tuned using either a back propagation algorithm alone or a combination of a back 
propagation algorithm and a least-squares method. Such a hybrid structure is useful to design FIS according 
to the collected data. For simplicity, we suppose that the FIS has two inputs x and y and one output f. The 
Takagi and Sugeno fuzzy models, a common rule set with two fuzzy “if-then rules” has the following 
expression (Figure 2): 
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where A1, A2 and B1, B2 are respectively fuzzy sets of input premise variables x and y and p1, q1, r1 and p2, q2, 
r2 are parameters of the consequent or output variable.  

 

Figure.1. FDI with ANFISPE 
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Let define µA1(x) and µB1(y) as the membership values respectively for “x is A1” and “y is B1” and work out 
u1=µA1(x) µB1(x) Similarly µA2(x) and µB2(y) are the membership values for “x is A2” and “y is B2” and 
u2=µA2(x) µB2(x). Then, the output is obtained as an aggregation of the qualified consequents: 

21

2211

uu

fufu
f

+
+=  (2) 

 

 
 
 

The Figure 3 depicts the general structure of ANFIS, where the square nodes represent constant 
nodes and the circle ones are adaptive nodes, whose parameters are changed during the training process. The 
ANFIS structure is composed of functional blocks that are generated using a five layers network as it is 
described in the following section [4]: 

 
3.1. Five-layer network ANFIS 
 
Layer 1 (input layer): Each node of this layer generates membership grades for inputs.  
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where x, y are the crisp inputs to node i, and Ai, Bi are the linguistic labels characterized by appropriate 
membership functions, µAi(x), µBi(x) respectively. Due to smoothness and concise notation, the Gaussian and 
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Fig. 3  ANFISPE architecture 
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bell-shaped membership functions are increasingly popular for specifying fuzzy sets. In this layer, the 
functions of the nodes are Gaussian membership functions (GaussMF): 
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with the set of parameters { }iiii ecda ,,, . as the values of these parameters change, the bell-shaped 

functions vary accordingly.  
 
Layer 2 (rule layer): In the second layer, the AND operator is used to work out the output of the concerned 
rule. This output represents the firing strength (i.e. degrees to which the antecedent part of the fuzzy rule is 
satisfy) and shapes the output function for the rule. Hence the outputs u1 and u2 of this layer are the products 
of the corresponding degrees from Layer 1 

2,1  2,1),()( === jandixxu BjAii µµ  (6) 

 
 
Layer 3 (average layer): In the third layer, the main objective is to calculate the firing strength ratio for each 
rule. Consequently, the output of layer 3 is the normalized firing strength: 
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Layer 4: (consequent layer): The fourth layer computes the contribution of each rule to the overall FIS 

output. The dimension of this layer corresponds to the number of fuzzy rules in the system. Every 
node in this layer is a square node with a linear function whose form is defined by: 
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where iu are the output from the previous layer. {pi, qi, ri}are the parameters of the linear combination. Layer 

5 (output layer). The single node computes the overall output by summing all the incoming signals. 
Accordingly, the defuzzification process transforms the fuzzy result into a crisp output: 
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The ANFIS networks need to be trained with the collected data. The training phase is a process that 

determines the optimum value of parameters so that ANFIS successfully fits the training data [5]. 
The proposed ANFIS combines two techniques in updating parameters. For premise parameters that define 
membership functions, ANFIS employs a gradient-based optimization algorithm. For consequent, parameters 
that specify the output equations, ANFIS uses the least-squares method. This approach is thus called hybrid 
learning method [6] since it combines the gradient-descent method and the least-squares method. 
 
a Hybrid learning algorithm 

When the premise parameters are not constant, the search space becomes large, and the convergence 
of training may be slow. The hybrid-learning algorithm is adopted to solve this problem. This algorithm is a 
two-step process. [7]:  
(1) The consequent parameters are identified using the least-squares algorithm after the initial premise 

parameters are determined, based on the equation: 
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The consequent parameters { }222111 ,,,,, rqprqp  are summed up in of column vector X. The matrix A 
and vector f result from a training set of size K { (xi, yi, f(xi, yi)), I = 1,…,K}: 

 
 
 
 

                           (11) 
 
 
 

 
The optimal approximation X*  of the consequent vector X is obtained with: 
 

fAAAX TT 1* )( −=                                                                            (12) 

and the least mean square error is fAX −min  for X anywhere in search space.  

(2) This resulting error is transmitted from the output of layer 4 to the input of layer 4 reversely based on BP 
algorithm of feed-forward neural network. Such back propagation process is used to update the premise 
parameters with gradient-descent method, and consequently to change the shape of membership 
functions. 

 
b  Faulty model design  

In this section, we describe the system’s nonlinear faulty model, it is modeled by the state space 
equation (13) where x is the state vector, f is the state function, h is the output function and d represents the 
system disturbances that are assumed to be a bounded signal.  
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In this paper, following the work of Iserman [8], system component faults are reflected in the 

physical systems parameter degeneration. Hence faults occurrence is represented by changes in the fault 
parameter vector’s p of the system. When the system is healthy, p takes the nominal value of the physical 
parameters. In faulty cases, the value of p depends on the way that the faults disturb the system. We assume 
in this paper that faults affect the physical parameters in additive form. The faulty model given by equation 
(13) is used to transform the problem of nonlinear fault diagnosis in an on-line nonlinear parameter 
estimation problem, for which unknown fault parameters are estimated using system inputs and 
measurements. 

 
3.2.  Fault Detection And Estimation With  ANFISPEs  

The proposed fault detection scheme is achieved firstly by the estimation of the fault parameter 
vector, using system input-output measurements. For fault isolation, we propose to use a bank of parameter 
estimators where each estimator is designed for a single parameter fault as described below. Consider the 
general parameter fault model given in equation (13) with n fault parameters (length of p ). We extract n 
single parameter model from the model (13). The bank of n parameter estimators is designed on each 
separate fault model given by equation (14), where the ith parameter estimator will essentially estimate the 
ith fault parameter. 
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For nonlinear systems, the parameter estimation is commonly achieved though the Extended 

Kalman Filter (EKF) [9] used as a standard technique for recursive estimation. Such method suffers from 
suboptimal performance and sometimes model divergence due to errors introduced by first-order 
approximation of the nonlinear dynamics. To overcome this limitation in parameter’s estimation for a 
disturbed nonlinear system, we integrate the ANFIS with the nonlinear dynamical model of the system. The 
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estimation of parameters is then based on a minimization of instantaneous output estimation error. The choice 
of ANFIS is motivated by their good approximation properties for nonlinear systems.  

The bank of ANFISPEs is composed of two subsystems; the nonlinear faults models given by (14) 
employed for state estimation and the ANFISPE used for adaptively approximate the nonlinear Fault 
parameter function. Therefore, at each time instant, each ANFISPE in the bank should perform the the 
estimation of the p element in the faulty parameter vector, that represent the estimation of ith fault parameter 
using the current and previous instant value of inputs and outputs measurements respectively.  
 
 
4. DYNAMIC MODELING OF REACTION WHEEL ACTUATORS  

To judge the performance of this fault diagnosis scheme, we consider the problem of detection, 
isolation and estimation of faults in Reaction Wheel actuators components, in a satellites Attitude Control 
System (ACS). Developing an accurate and efficient fault diagnosis in reaction wheel components become a 
challenging problem due to the inherent nonlinearity of reaction wheel and satellite attitude dynamics and 
presence of disturbances exerting on satellite body. The selection of the reaction wheel platform is motivated 
by stringent requirements on satellites to operate autonomously in presence of faults in sensors, actuators and 
components. Moreover, the large number of reported publications [10], [11], [12] on this topic over the 
recent years provides further evidence of the importance of the application. To assess the performance of our 
proposed FDI scheme in a near-realistic environment, we use the MATLAB-Simulink tools to develop an 
accurate simulation model of a 3-axis stabilized satellite.  

 
 

 
 

The simulation model consists of the well-known nonlinear satellite attitude dynamics [13], a high 
fidelity nonlinear model of the reaction wheel [14] and decentralized PID controllers that stabilize the closed-
loop system so that the control input signals and the state vector remain bounded prior to and after the 

Fig  4. Detailed Reaction Wheel Bloc Diagram 
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occurrence of a fault. Furthermore, nonlinear Euler transformations are applied to transform the satellite 
angular velocities to Euler angle rates, namely roll, pitch, and yaw. The high-fidelity model of a reaction 
wheel (RW), given in the block diagram in Figure 4, incorporates all the nonlinearities as well as internal 
disturbances that are present in a real RW actuator. The closed-form nonlinear state-space representation of a 
reaction wheel model may be expressed as follows: 
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where Im  ( the current) and � (the angular velocity) are the  measured states of Reaction Wheel,  VCom  is the 
input command voltage signal of RW, generated by the PID controller in the closed-loop attitude control 
system. �1, �2, �3 are nonlinear functions modeling EMF torque limiting, coulomb friction, and speed limiter 
subsystems, respectively. Ibus a highly nonlinear function of states and the bus voltage Vbus, and �1 �2 are 
representing torque ripple and cogging respectively [14]. The objective is to detect, isolate and estimate the 
severity of possible faults in RW components using Reaction wheel signals. 

Thus, measurements of RW current and angular velocity together with the wheel command voltage 
comprise the input vector of the ANFISPE. Our objective is to detect, isolate and estimate the faults in two 
components of reaction wheel, bus voltage Vbus , and motor gain, kt , both have been identified as major 
sources of faulty behavior in reaction wheels [14]. It should be accentuated. The corresponding faulty 
behavior can be represented as an additional signal in the form of a single-parameter fault model for each 
physical parameter (single fault case) given in the following equation [14].  

 
 

5. SIMULATION RESULTS  
The simulations have been performed by using nonlinear models of the reaction wheel and the 

attitude dynamics of a 3-axis stabilized satellite. The closed-loop satellite attitude control system was 
stabilized using three decentralized PID controllers. The simulation data are obtained from the closed-loop 
ACS of satellite simulation, with a run-time of 2000s. Many reference steps are commanded to the satellite in 
the Pitch channel. The satellite body is under a random torque disturbance action with the maximum norm of 
10-4 N·m. The nonlinear model in the healthy mode (kt = 0.029, Vbus =24V), the parameters of the reaction 
wheel are adopted from Bialke [14] for the ITHACO’s standard type ‘A’ reaction wheels. Firstly in this 
simulation the system Submit to an irregular fault with a strong amount over the] 450 950] time interval in 
the motor gain. In consequence, we suppose that the faults affect the motor      parameter in additive form as 
follows: 
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The results of our simulation are depicted in the figure 5 and figure 6 we can show the effect of the 

injected fault in the behavior of the reaction wheel actuator in the measurement values of the wheel’s angular 
velocity degradation and the motor’s current consumption. We note the significant impact of the introduced 
motor gain faults on the reaction wheel states. The Kt ANFISPE provide a good estimation of the effective 
motor gain value we can show the close match between the injected and the estimated motor gain value 
during all the concerned interval in the figure 7, moreover the estimation of Vbus value do not diverge from 
the effective one and the Vbus ANFISPE provide a good estimation. So the effect of the Kt fault doesn’t touch 
the efficiency of the Vbus ANFISPE as it can be seen in the figure 8 in the studded time interval.   

Next, in time interval [950 1450] we inject the nominal values of the RW’s parameters in order to 
obtain the healthy behavior of the system and we find the healthy states of the RW actuator. In the follow 
time interval [1450 2000] the satellite submit to an additive form of fault, the following equation represent 
the Bus Voltage behavior: 
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As can be seen from the Figure 5 and 6, the measurements of RW states suffer clearly from the Vbus 

drop and the behavior of the actuator become degraded states. The Kt ANFISPE’s estimated value doesn’t 
become infected by the Vbus drop and the performance of this estimator can reject the effect of the Vbus fault 
occurrence as it can be shown in the figure 7. In the other ANFISPE we can see from the figure 8 that the 
estimated value of  Vbus present a very close match with the injected one and the error of estimation can be 
neglected, we can see that the estimation follow the drop of the Bus Voltage as  well as required. 

 
 

Fig. 5. Fault on Angular velocity of reaction wheel 
actuator 

 

 
Fig. 6. Fault on Angular velocity of reaction wheel 

actuator 
 

 

Figure. 7. Fault on Angular velocity of reaction 
wheel actuator 

  
Figure. 8. Fault on Angular velocity of reaction wheel 

actuator 
 

 
6.  CONCLUSION   

In this research, a new solution based on the neural fuzzy inference system (ANFIS) is proposed and 
presented to achieve the objectives of fault detection, isolation in a satellite’s ACS nonlinear system with the 
states measurement. This approach is based on two ANFIS parameter estimators where each fault parameter 
is representative of a specific kind of system component fault. Such method allows fault isolation with 
minimum residual signal processing. Simulation results show the effectiveness of this method in estimation 
of the effective value of physical parameters, of two types of component faults in reaction wheel actuators of 
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a satellite’s attitude control system. Consequently in fault diagnosis and estimation of two types of 
component faults. Inferential physical parameters observer is a very effective tool to detect the malfunction 
of nonlinear satellite’s ACS. The learning ability of the adaptive neural fuzzy inference system allows us to 
decoupling the effect of each fault from the estimations of the others and the results obtained present very 
interested tools for the faults isolations. Moreover, the time processing for fault diagnosis becomes a very 
small as possible. 
 
 
REFERENCES  
[1]. E. Sobhani-Tehrani, K. Khorasani, S. Tafazoli, Dynamic Neural Network-based Estimator for Fault Diagnosis in 

Reaction Wheel Actuator of Satellite Attitude Control System, Proc. Int. Joint Conf. on Neural Networks, pp. 2347-
2352,2005. 

[2].  N. Tudoroiu  and K. Khorasani. Fault Detection And Diagnosis For Reaction Wheels Of Satellite’s Attitude 
Control System Using A Bank Of Kalman Filters, Proc of the 2005 IEEE Conf on Control Applications: 0-7803-
9029-6 

[3].  J.S.R. Jang, : ANFIS adaptive-network-based fuzzy inference system, IEEE Transactions on Systems,Man, and 
Cybernetics 23 (1993)665–685. 

[4].  Fi-John Chang, : Adaptive neuro-fuzzy inference system for prediction of water level in reservoir  Advances in 
Water Resources 29 (2006) 1–10 

[5]. Jang JSR, Sun CT, Mizutani E. Neuro-fuzzy and soft computing: a computational approach to learning and 
machine intelligence. N.J: Prentice Hall; 1997. 

[6]. [Zuperl Uros  Adaptive network based inference system for estimation of flank wear in end-milling. journal of 
materials processing technology 209 (2009) 1504–1511 

[7]. Yuang-Shung Lee, Tsung-Yuan Kuo, Wei-Yen Wang. Fuzzy Neural Network Genetic Approach to Design the 
SOC Estimator for Battery Powered Electric Scooter. 2004 IEEE: 2759-27657 

[8]. Isermann, : Fault diagnosis of machines via parameter estimation and knowledge processing - a tutorial paper, 
Automatica, vol. 29, No. 4, pp. 815-835, 1994 (b). 

[9]. S. Haykin, Kalman filters, in: S. Haykin (Ed.),  Kalman filtering and neural networks, Wiley/Interscience, New 
York, pp. 1-22, 2001. 

[10]. E. Sobhani-Tehrani, K. Khorasani, S. Tafazoli, “Dynamic Neural Network-based Estimator for Fault Diagnosis in 
Reaction Wheel Actuator of Satellite Attitude Control System,” Proc. Int. Joint Conf. on Neural Networks, pp. 
2347-2352, 2005. 

[11]. N. Tudoroiu and K. Khorasani, “Fault detection and diagnosis for reaction wheels of satellite’s attitude control 
system using a bank of Kalman filters,” Int. Symp. on Signals, Circuits and Systems, vol. 1, pp. 199-202, 2005. 

[12]. H. A. Talebi and R.V. Patel, “An Intelligent Fault Detection and Recovery Scheme for Reaction Wheel Actuator of 
Satellite Attitude Control Systems,”  IEEE Conf. on Control Applications, pp. 3282 – 3287, 2006. 

[13]. M. J. Sidi, Spacecraft Dynamics and Control : A Practical Engineering Approach, New York, NY, Cambridge 
University Press, 1997. 

[14]. B. Bialke, :High fidelity mathematical modeling of reaction wheel performance, in 21st Annual American 
Astronautical Society Guidance and Control Conference, February 1998. AAS paper 98-063. 

 


