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the best of my knowledge and it is of great prattiignificance.
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1. INTRODUCTION

There has been an explosive growth in the wiredeasmunication area in recent years. This growth ha
forced system designers to increase the qualigseofice, coverage, and bandwidth. Smart antenmaarar
emerging technology that can be used to tackleapeacity, quality, and coverage problems facediieless
communication under heavy traffic. Such antennas aisweighted average of the received signals to
automatically adjust the beam towards the signahteirest (SOI) to radiate or receive desired dgyadnile
nulling the interferers. If the environment is charg dynamically, the complex weights need to beistdd
in order to track the changes. In the stationaisedhe weights are found and the beam is fixed,irbut
adaptive systems these weights must be updated ¢wee new information comes in. The adaptive
algorithm chosen is very important since the cogerce speed, stability, and complexity are impartan
issues in an adaptive system design. The algoritiust satisfy some chosen criteria for the optindrat
process. Most commonly used techniques are leash mguares (LMS), recursive least squares (RLS) [1]
direct matrix inversion (DMI) [2], neural networK8], conjugate gradients [4], and constant modulus
algorithm (CMA) [5]. The performance of the RLS a8l schemes are not dependent of the eigenvalue
spread of covariance matrix, since the covariana&imis inverted directly. On the other hand, tHdS
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algorithm suffers from slow convergence in the cabéarge eigenvalue spread of the sample covagianc
matrix. However, these classical adaptive procgssiechniques employ large number of snapshots
(observation data) to carry out digital beamformiagd thereby make their applications in real life
prohibitive as they are computationally too expeasand are unsuitable for a fast dynamically chaggi
environment as they require a latent time to collee snapshots of data [6]. A snapshot is defamthe set
of voltages measured at the terminals of the aaen@n the other hand, when the number of snapebets
for covariance matrix estimation is insufficient this situation, the performances of the convesatio
adaptive algorithms are known to degrade substBnfi 8]. This undesired behavior results in duetion
of the array output signal-to-interference-plusseaiatio (SINR).

To mitigate these practical shortcomings, recemtlgenetic algorithm GA was developed for
solving the robust adaptive beamforming optimizagiooblem [9]. Although, the use of genetic optiatian
is not new in smart antenna technology [e.g. sed3}ithe developed GA in [9] has been shown twdry
effective in smart antenna technology. However, dhe of this paper is to devise a practical andpm
scheme that is suitable for a fast dynamically givag environment. We achieve this goal by consitga
small number of snapshots to carry out digital bfleaming. Since no covariance matrix is needed in GA
approach and it operates with small population, $sizean be implemented in real time using a modkgital
signal processing device. The organization of gaper is as follows. Section Il contains the signadel
and presents the existing adaptive algorithms. GAeapproach for the computation of the adaptivawarr
weights is introduced in Section Ill. Simulatiorsuéts are given in section IV and conclusions dramn
Section V.

2. BACKGROUND
Fig. 1 shows a block diagram of an antenna arrayrelted by adaptive algorithm. The output of such
array which consists & antennas at a time sample k is given by

y(k) =w"x(k) @
wherek is the time indexx(k) =[x,(k) X,(K)...xy_(K)]"is the complex vector of received signal,

w=[w, w,..w,,]"is the antenna weight vectdrandH denote transpose and conjugate transpose,
respectively. The received signal at time inskaistgiven by

x(K) =s(k) +i(K) +n(k)

= skya@,) + i, (Ka(d, )+ n(k) @

wherel is the number of interference signals. Hetk) andi, (k) are the signal and interference symbol

samples. It is understood that all the signal tdriest (SOI), interferences, and thermal noise aarfunction
of time. The SOI and interference angles of arri@DA) aregd,andd,, j = 1...,1 , respectively, with

corresponding steering vecta(®,) anda(é,) . LetR ,, denote theN x N theoretical covariance matrix of the
received signal. Assume tHat is a positive definite matrix with the followingrim
R, =o’a8,)ae,)" +ZI:afa(é’j)a(é’j W +Q
= 3)
whereo? andaf, j =1..., are the powers of the uncorrelatedd impinging s&g&) andi; (k) respectively,
andQ is the noise covariance matrix. The error sigfl) , as indicated in Fig.1, is

£(k) = d(k) -w" (k)x(k) “4)
whered(Kk) is the desired output at samgleThe cost (fithess) function is given as
J(w) = Ed*(k)]-2w" (K)r g, +w" (k)R , w(k) 5)

wherer ,, = d(k)x" (k) andR ,, = x(k)x" (k) . We may employ the gradient method to locate thémum of
(5). Thus
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0, (W) ==2ry, + 2R, w(k) (6)

The minimum occurs when the gradient is zero. Thus,solution for the weights is the optimum Wiener
solution as given by

Wopt = R;ir dx (7)

It is obvious that computation of the optimum weigbquires the knowledge of both the correlatioririna

of the input signal and the cross correlation mabvetween the input signal and the desired signal.
Computing the inverse of the autocorrelation matax be costly; using the steepest descent algouthe
can reduce the computation time since the weigtgscamputed in a recursive way. The updated weight
vector, which uses the steepest descent optimizatithod, is written as [1]

w(k+1) =w(k) + " (K)x(k) (8)

Here,u is the step size which controls the rate of conecg of the LMS algorithm. One of the drawbacks

of the LMS is that the algorithm must go throughnmadterations before satisfactory convergence is
achieved. If the signal characteristics are rapidiiggnging, the LMS algorithm may not allow trackivigthe
desired signal in satisfactory manner. One posségbproach to circumventing the relatively slow
convergence of the LMS is by use of RLS algoritlifa The convergence rate can also be acceleratedédy
of the conjugate gradient (CG) method [4,10]. Tlalgof CG is to iteratively search for the optimum
solution by choosing perpendicular paths for eaelwv riteration. The detailed information about these
methods can be found in the cited references. Meredhese algorithms are canonical adaptive signal
processing algorithms. They are based on the stedpscent algorithm, which is easy to implememtcam
get stuck in a local minimum. Furthermore, the peobwith the adaptive algorithms (see Fig.1) ig thay
need a receiver at each element to detect theeintgignals to form the covariance matrix. The irens are
very expensive and require regular calibrationthe cost of this type of an array is extremely hifzh
addition, if the number of iteration (snapshotsiata) used for covariance matrix estimation is fingant,

the adaptive algorithms will attenuate the desgigdal as it were interference.

3. PRINCIPLESOF THE PROPOSED METHOD

3.1. Cost function of GA

A genetic algorithm manipulates the variables obst function until the cost is minimized. In tloiase,
the cost function is a linear array with variablapditude and /or phase weights, and the cost istdted
output power. It returns the sum of the magnituithe array factor at interference angiesj = 1...,1 . Its

equation is written as

LW i27ndsin(6;)

J(W):20Loglt{mln{z we / D (9)
j=1 n=1

Whered represents the spacing between antenna elenigatsjavelength and;,, = a,e®r. Controlling the

weights modifies the main beam peak and nulls.

The problem with this cost function formulationtiet the desired signal and the interfering sigasats
mixed together. Minimizing the output power willatease the desired signal in addition to the iater§
signals unless the desired signal is assumed & 81@ main beam and the adaptive weights are reomesd
to small values that cannot place a null in themigiam.

Since the total output power consists of both th&iréd signal and interference signals, some caingtr
are needed to insure that only the sidelobes dtednand not the main beam. This paper shows haw th
constraints are implemented through using onlyaation of the elements in the antenna array. Ireroth
words, only a few of the edge element are givenabbe amplitude weights. For example, if a twenty
element array has amplitude weights as given bydlh@wving

W=[wy, W,o W onesdld) w; Wy Wl (10)
I e ——
chromosome constant chromosome

Where the three edge elements on both ends ofntiearza array have continues variable amplitudéngstt
and the remaining 14 elements in the middle ofyahave uniform amplitude weight. Here the amplitude
weights of the array are assumed symmetric. A naotis variable GA is used in place of the binary BA
do the adaptation. The array is assumed to stantavuniform amplitude distribution. Each chromogoim
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the GA population represents amplitude settingaahesdge element in the array. Adjusting theséngett
has a small effect on the main beam but can platie im the sidelobes. The goal of the GA is to imize
the total output power of the antenna by adjustiege edge elements. Since the algorithm mustdharfa a
global minimum is not necessary, the GA uses algoglulation size.

It should be mentioned that the most genetic algm$ have a large population size and low
mutation rate. Although these implementations Hasen successful, they require many function calfnt
an acceptable solution. These slow algorithmsnwatlwork under fast dynamically changing environtrian
real time applications like mobile communicatiorsteyns. There has been strong evidence that genetic
algorithms with small population size and high miotarates find good solutions fast [13], [14].

3.2. Genetic Algorithm
In conventional adaptive processing, it is assurfet a set of weights,,n=012,...N-1, is

connected to each one of the antenna elements., Bhélock of data is generated correspondiniyl to
snapshots (i.ex,form=0,1,...,M-1and n=0, 1,. .., N-1)efd the superscript m arjdenotes that the

voltagex'is induced at antenna element n at a specific timance m. Then, a covariance matrix of this
block of data ofNxM)samples is evaluated and the adaptive weights igem dpy the Wiener solution,
which is related to the inverse of the covariancatrin. The computational load of forming covariance
matrix and its inversion is @(N?*) operation (see equation 7). Hence, it is difficalimplement it in real
time. In addition, the procedure assumes that th ds stationary over the@d)samples (i.e., the

environment of the SOI, and interference scendré&® not changed over the entire data collectioogss).
Because of these disadvantages of the conventémlagdtive processing, a GA with small populatiore $&
used to perform the adaptation control of the amdeweights. The structure of the adaptive beamfagmi
controlled by a GA is shown in Fig. 2. The GA penfis the adaptation by manipulating the weight veafo
the cost function until the total output power isimized.

Since the GA reduces the total output power obthemformer, constraints are used to prevent desigaadl
attenuation in the main beam. In this work, thestaints take the form of using only a few of thidge
elements of the array. Because only few of the edgments are adaptive, the main beam receivetetimi
perturbation. As an example, consider an array @fements that are spadeBi apart. Three edge
elements on both ends of the array have continagable amplitude settings. There are two interfeee
signals incident at 20 degree and -20 degree. dhdting adapted amplitude weights are given by

w=[0.0949 01685 08188 11111111111111 08188 0.1685 0.0949.

The array is assumed to start with a uniform atugli distribution. The GA uses the following stdps
adaptive interference cancellation:

1. An initial population of chromosomes is randomlyngeated. By this way, the first generation of
chromosome is created. The weights of these thige elements are described by a chromosome,
i.e. each chromosome contains three variables.

2. The weights of these edge elements are sendingneobéamformer and the output power is
measured. In this way, a fitness (cost) value sigagd to each chromosome in the population in
order to expressing how well the chromosome meegfsirements to the optimized system.

3. Members of the population with high costs are dided and a new population of chromosome
(offspring) is generated by selecting the best texgschromosomes (parents). The parents are
combined by crossover and mutation to produce offgp The offspring replace the discarded
chromosomes. This step is iteraMdimes. This means thM generations of chromosome are
created in order to find as good chromosome aslgess

4. The result of the genetic optimization is obtaiasdhe best chromosome at Méteration.

The flow chart of the GA-based adaptive beamformimigshown in Fig. 3. Each chromosome
represents the variable weights of edge elemehiss& weights are sent to the antenna array anoutpet
power is measured. In this way, every populatiomiver has an associated cost. Members of the papulat
with high costs are discarded. The surviving memlderm a mating pool. The parents are combined by
using single point crossover to produce offsprifife offspring replace the discarded chromosomes. Th
next step randomly mutates a certain percentagbeopopulation. After mutation, the process repeats
measuring the output power associated with the pagwlation.
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Fig. 2 (b) Flow Chart of Genetic Algorithm.

4. SIMULATION RESULTS

To evaluate the performance of the GA under adasamically changing environment, some computer
simulations have been carried out in various séesam the following, we assume a uniform linearag
with 20 elements and half-wavelength element spaciihe desired signal with SNR=20dB is assumed to

impinge on the array from the directifn=0°. Two interferers are assumed to impinge on thayafrom

the direction®, =-20"andé, =20, both with interference-to-noise ratio (INR) eqt@l20dB. The noise,
n(k) , is spatially and temporally white and it has smptex Gaussian zero mean distribution with variance
o2 =001

In our first example, we study the convergence odtthe GA-based smart antenna beamformer

compared to LMS, RLS, and CG for interference cHaien. In this case, each run of Monte Carlo
simulation consisting dfl =100samples ofx(k), i.e. 100 iterations or generations are used. Skbp size

parameter of the LMS algorithm is chosenuas],/4trac€{|§xx]. The convergence rate of the LMS for

interference cancellation is governed by the eigrevapread df?xx. For RLS, the forgetting factor is chosen

to be 0.9. While GA parameters include a populasiae of 8, a 50% selection rate, roulette whelelcsen,
uniform crossover, and a 10% mutation rate. Theesgpént and resulting adapted beam patterns for all
techniques appears in Fig.3(a). From Fig.3(a), Wwseove that, when the number of snapshdik)(is
sufficient, all patterns have deep nulls at the AQx the interferences. The cost function (or meguare
error) of all techniques as a function of iteratisrshown in Fig. 3(b). It is quite clear from R¢b) that the

GA quickly converge to optimal interference caraiitin. For this case, the CG performs similarlyagmms

of convergence rate. The LMS did not converge @ftdr 50 iterations.
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In the second simulation example, we investigateetifiect of the small number of iterations (which
can also be viewed as a steering vector error enolp8]) on the performance of the algorithms te$tedhe
same scenario as in the previous example except$ample size dfl =20and M =10iterations. Figs.4(a)
and 5(a) shows the beam patterns of the testeditalgps. Convergences of the LMS, RLS, CG, and GA
algorithms for interference cancellation are shawirigs. 4(b) and 5(b). In this scenario, the Géhtg@que
demonstrates an appropriate operation under thiatigin. On the other hand, as illustrated in Bi@), the
beam pattern of the RLS allocates a deep null fier desired signal and the interference cancellation
(creating nulls) of the LMS algorithm is unsatigfay. This inadequate operation of the LMS and RLS

highly depends on the number of iteratidvl | which is used to estimate the covariance mﬁ}gg( In Fig.6

we show the output SINR of the tested algorithmsuw® the number of iteration. It is clearly demaoatst
that the GA shows better capabilities against tiiece of small number of iterations. It works welven
whenM is as small aM =2. The LMS requires a large numberhdf. As illustrated in Fig.6, the RLS
algorithm has a problem of instability with largamber of iterations under a fast dynamically chaggi
environment. This problem of the RLS is well-knoimrthe adaptive control literature [15].

In our last example, we study the impact of comstsausing subset of few edge elements with GA,
on the mainbeam perturbation and interference datio®. Fig.7 show the SINR reduction when various
subset of edge elements are used to perform thebeein constraint in GA. This reduction dependshen t
number of edge elements that used for constrainbur simulation we found that the best result rbay
obtained when 3 elements on each end of the areag used. Fig.8(a) shows the GA patterns of thewar
subset of the edge elements. Corresponding coeneegrates are shown in Fig. 8(b). From Fig.8, axeeh
verified that the conventional GA (here we refectmventional GA as unconstraint GA, where all ante
elements are variables, while the proposed onefésad as constraint GA) exhibits little perturbatto the
mainbeam peak. On the other hand, the constrainp&#forms very well especially when 3 edge elements
on both ends of the array are variable.
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5. CONCLUSIONS

For the conventional adaptive algorithms, an inadég estimation of the covariance matrix (which
often occurs under a fast dynamically changing mmvnhent) results in adapted antenna patterns vigth h
sidelobes and distorted mainbeams. The GA has pemosed as an alternative to the conventional many
iterations-based adaptive algorithms. The desigh@torresponding GA was highlighted and its acitie
performance was characterized in terms of bothofitanal interferences cancellation and the SINRvds
demonstrated that a potentially more attractiveRSislachievable by the proposed GA-based smarhaate
beamformer even when the number of available smapss scarce. Moreover, fast convergence to optima
solution is achieved by using a small populatiae €ind high mutation rate. Furthermore, using sulfshe
edge elements to form the constraint in the GA ceduthe mainbeam perturbation and provides addition
control over the sidelobe level.
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