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 This paper presents an experimental measurement of ac 50 Hz flashover 
voltage (kV) of hydrophobic polymer insulators. Hundred thirty five 
different testing conditions were used to evaluate the electrical performance 
of hydrophobic surfaces of composite polymer insulators. The study of 
flashover voltages depend on the silicone rubber (SiR) content (%) in 
Ethylene propylene diene monomer (EPDM) rubber, water conductivity 
(µS/cm), volume of water droplet (ml) and number of water droplets on the 
surface of polymer insulators. Artificial neural network (ANN) is used 
successfully to model nonlinear functions which are difficult to model using 
classical methods. ANN can estimate the values of flashover voltage (kV) for 
different polymer insulators. The proposed network is trained using different 
environmental wet condition such as; water conductivity, volume of water 
droplet and number of water droplets on the surfaces of composite different 
polymer. After training, the network can estimate the flashover voltage for 
different inputs. A comparison between the laboratory measurements of 
flashover voltages and computational results of ANN were convergent. The 
results obtained from applying ANN show that it can be used to model the 
data with accuracy of 96%. These results prove that ANN can be considered 
a successful model to evaluate the electrical performance of hydrophobic 
polymer insulators and predicts the best hydrophobic composite surface that 
withstands higher flashover voltage under wet contaminated weather 
condition. 
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1. INTRODUCTION  

Power transmission at high voltages has acquired considerable prominence in the recent times. It has 
become essential to design and develop compact cost-effective and reliable insulation structures. With the 
advancement in polymer technology it has become possible to design insulation structures with the enhanced 
mechanical, electrical and thermal properties. The use of polymeric insulators for outdoor transmission lines 
has rapidly increased during the last two decades. Both service experience and the laboratory tests 
demonstrated a better performance in contaminated conditions [1]-[3]. 
 In recent times, composite insulation materials are gaining importance as outdoor insulating 
structures especially the silicone rubber. Silicone rubber has good pollution performance and high 
hydrophobicity. In addition, it has high discharge resistance. Water droplets on a polymeric surface increase 
locally the applied electric field. Local field intensifications lead to partial discharges (PD) and/or localized 
arcs, causing damage to insulating materials [4]-[7].  
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 The values of flashover voltages of polymer insulators can be affected with some parameters such 
as; conductivity (µS/cm) of water droplet, number of droplets, volume of water droplet (ml), and percentage 
of silicone rubber content (%) to the composite polymer. Hydrophobic polymeric surfaces are characterized 
by a low surface conductivity which in turn gives a low discharge activity and a higher flashover voltage. 
This holds also for polluted environments. Reduced hydrophobicity implies a higher risk for flashover of the 
insulator. Hydrophilic materials, on the other hand, are very sensitive to polluted environments, and are 
characterized by a significant activity of local discharges [8].  

Artificial neural networks (ANNs) can be used in problems requiring function approximation, 
modeling, pattern recognition and classification, estimation and prediction, etc. [9]. In the field of high 
voltage insulators, ANNs can be used to estimate the pollution level [10], [11], to predict a flashover voltages 
[12],[13], to analyze surface tracking on polluted insulators [14] and also to estimate the flashover voltage on 
hydrophobic polymer insulators which will be examined in this paper. Multilayer perceptron is a famous 
supervised neural network which is used as a universal function approximator. Backpropagation learning 
algorithm is used successfully to train the network which is subsequently used to estimate the flashover 
voltage [15]. In this paper, the trained network was employed to evaluate the electrical performance of 
hydrophobic polymer insulators and predict the best hydrophobic composite surface that withstands higher 
flashover voltage under wet contaminated weather condition. 
 
 
2. EXPRIMENTAL PROCEDURE 
2.1    Material Details 

Composite polymeric insulators were tested during this study. The composite was consisted of 
EPDM rubber with various content (%) of SiR (0, 25, 50, 75 and 100%), respectively. 

 
2.2    Test Procedure 

The ac 50 Hz high voltage was supplied from single phase high voltage transformer (150 kV, 15 
kVA). Two copper electrodes used as a shape of half cylindrical rounded edges. The electrodes had very 
smooth without any irregularities to avoid the non-uniform electric field [16]. 

 
2.3   Specimens Dimensions 

The dimension of each specimen is 80 mm length, 40 mm width and 3 mm thickness. The water 
droplets were put on the surface of specimen with a syringe. The volume of water droplets are 0.05, 0.1 and 
0.15 ml. The conductivity of the water droplets are 50, 500 and 1000 µS/cm. The distance between the two 
parallel electrodes is 40 mm. Number of water droplets on the surface of each composite specimen are 1, 3 
and 5 droplets. To simulate the surface of composite at outdoor wet and fog weather condition, angle with 
10º from the horizontal level was used. The high voltage between electrodes increased gradually until the 
flashover voltage (kV) occurs. 
 
 
3. BACKGROUND ABOUT ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks are computational networks which attempt to simulate the structure and 
the behavior of biological nervous system. An artificial neural network consists of a set of processing 
elements called neurons that interact by sending signal to one another along weighted connections [9]. The 
connection weights, which can be determined adaptively, specify the precise knowledge representation. It is 
not possible to specify the weights beforehand, because the knowledge is distributed over the network. 
Therefore, a learning algorithm is adopted in which the strengths of the connections are modified to achieve 
the desired form of activation function. 

The learning algorithms are divided into three categories: supervised, reinforced and unsupervised. 
The type of error signal used to train the weights in the network defines these three types of learning. In 
supervised learning, an error scalar is provided for each output neuron by an external ‘teacher’, while in 
reinforced learning the network is given only a global punish/reward signal. In unsupervised learning, no 
external error signal is provided, but instead internal errors are generated between the neurons, which are 
then used to modify weights [9]. In supervised learning the weights, connecting neurons are set on the basis 
of detailed error information supplied to the network by an external teacher. In most cases the network is 
trained using a set of input-output pairs, which are examples of the mapping that the network is required to 
learn to compute. The learning process may therefore be viewed as fitting a function, and its performance can 
thus be judged on whether the network can learn the desired function over the interval represented by the 
training set, and to what extent the network can successfully generalize away from the points that it has been 
trained on [13]-[15]. 
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3.1.  Multilayer Feedforward Network 
The simplest network capable of supervised learning is a three-layer feedforward network consisting 

of an input layer, hidden layer and an output layer. Each neuron of the hidden layer receives a signal from all 
input neurons along connections with modifiable weights. But such three-layer feedforward networks can 
compute only linearly separable functions. However, it has also been shown that a feedforward network with 
more than one hidden layer of adaptive weights can compute very complex functions 

The neurons in the network can be divided into three layers: input layer, output layer and hidden 
layers (Figure 1). It is important to note that in feedforward networks, signals can only propagate from the 
input layer to the output layer via one or more hidden layers. It should also be noted that only the nodes in the 
hidden layers and the output layer, which perform activation function, are called ordinary neurons. Since the 
nodes in the input layer simply pass on the signals from the external source to the hidden layer, they are often 
not regarded as ordinary neurons. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 1. Architecture of three layers Feedforward Network. 
 
3.2.  Input-Output Data Normalization 

 Since the input and output variables of the ANN have different ranges, the feeding of the original 
data to the network, leads to a convergence problem. It is obvious that the output of the ANN must fall within 
the interval of (0 to 1). In addition, input signals should be kept small in order to avoid a saturation effect of 
the sigmoid function. So, the input-output patterns are normalized before training the network. Normalization 
by maximum value is done by dividing input-output variables to the maximum value of the input and output 
vector components. After the normalization, the input and output variables will be in the range of (0 to 1). 

 
 

4. EXPERIMENTAL MEASUREMENTS 
The ac (50Hz) flashover voltages (kV) measurements have been recorded for five composite 

polymer insulators. SiR content (%) in EPDM insulators are (0, 25, 50, 75and100) %.  
Figure 2 shows the flashover voltages (kV) of EPDM with different SiR contents (0, 25, 50, 75 and 

100) % at various number of water droplets (1, 3 and 5) under constant conditions such as; volume of each 
water droplet (0.05 ml) and water conductivity (50 µS/cm). 

From this figure it can be noticed that, the percentage of SiR content (%) plays an important role on 
the flashover voltage (kV) values. The flashover voltages are 8, 11, 14, 16 and 19 kV at 0, 25, 50, 75 and 
100% SiR content in EPDM respectively, at one water droplet with 0.05 ml volume and 50 µS/cm 
conductivity. Increasing the number of water droplets from 1 to 5 droplets decreases flashover voltages at the 
same volume and water conductivity. For example, the flashover voltages are 8, 7 and 6 kV at 1, 3 and 5 
water droplets under the same condition of water conductivity and volume of water droplet at 0% of SiR 
content in EPDM. At one water droplet with conductivity of 50 µS/cm, flashover voltages for different SiR 
content (%) EPDM for various volumes of water droplet 0.05, 0.1 and 0.15 are illustrated in Figure 3. 

It can be seen from this figure that, at higher content of SiR (100%), the flashover voltage decreases 
by increasing the volume of water droplets. This means that, increasing the volume of water droplets 0.05, 
0.10, and 0.15 ml in specimens of 100% SiR content register 19, 17 and 15 kV respectively under water 
conductivity 50 µS/cm. 

Figure 4 shows the relationship between the flashover voltages and SiR content in EPDM at various 
water conductivity 50, 500 and 1000 µS/cm for 5 water droplets with constant volume of each droplet equal 
to 0.15 ml.  

Hidden Layer 

Inputs 

Outputs  
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Figure 2. Flashover voltages for different SiR content (%) in EPDM specimens at various number of water 
droplets (1,3 and 5) with (0.05 ml) volume of water droplet and (50µS/cm) water conductivity. 

 
 

 
 

Figure 3. Flashover voltages for different SiR content (%) in EPDM specimens at various volumes of water 
droplets (ml) for one water droplet with (50µS/cm) water conductivity. 

  
 

 
 

Figure 4. Flashover voltages for different SiR content (%) in EPDM specimens at various water conductivity 
(µS/cm) for 5 water droplet with (0.15 ml) volume of water droplet. 

It can be noticed from this figure that, the values of flashover voltage decrease 8, 6 and 4 kV at 
water conductivity 50, 500 and 1000 µS/cm, respectively, under 5 water droplets with 0.15 ml volume for 
specimen of 50% SiR content in EPDM. It can be seen from the experimental work that, the hydrophobic 
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surface of composite polymer insulators were pronounced effect on the values of flashover voltage. The 
electrical performance improves with increasing the silicone rubber content. At weather of wet condition 
with high salinity, the hydrophobic surface withstands the flashover voltage. 

 
 

5. MECHANISM OF COMPUTING FLASHOVER VOLTAGES 
The configuration in figure 5 shows different parameters affecting on the values of flashover 

voltages of composites rubber. Various parameters are: 
i- Silicone rubber content (SiR %) in EPDM rubber, varying from 0% to 100%. 
ii-  Water conductivity (µS/cm), 50, 500 and 1000 µS/cm. 
iii-  Volume of water droplets (ml), 0.05, 0.10 and 0.15 ml. 
iv- Number of water droplets, 1, 3 and 5 droplets. 

 

 
Figure 5. Diagram illustrates the mechanism of computing flashover voltages. 

 

 
The flashover voltages (kV) can be proportional with SiR content (%), water conductivity (µS/cm), 

volume of water droplet (ml) and number of water droplets according to the proposed function: 
 

Flashover Voltage (kV) α 
                                     SiR (%) 
No. of droplet*Vol.droplet(ml)*water Cond.(µS/cm) 

 
 
6. DEVELOPMENT OF THE NEURAL NETWORK FOR FLASHOVER VOLTAGE 

The purpose of the ANN developed is to estimate the flashover voltage from the input data, which 
are obtained from previous experiments results. 
  
1. Input Selection 

The inputs to the neural network ANN are silicone rubber content (SiR %) in EPDM rubber, varying 
from 0% to 100%, water conductivity (µS/cm), 50, 500 and 1000 µS/cm, Volume of water droplets (ml), 
0.05, 0.10 and 0.15 ml, Number of water droplets, 1, 3 and 5 droplets. The output of the neural network 
model consists of one neuron representing the flashover voltage for a specific operating condition. The 
chosen input data were divided into two groups, the training group, corresponding to 50% of the patterns, and 
the test group, corresponding to 50% of patterns; so that the generalization capacity of network could be 
checked after the training phase. The output of the neural network model consists of one neuron representing 
the flashover voltage for a specific operating condition.  
 
2. Selection of ANN 

The ANN used is the multi-layer feedforward type, with one or more hidden layers represented in 
Figure 6. The number of units in each hidden layer is determined experimentally, from studying the network 
behavior during the training process taking into consideration some factors like convergence rate and error 
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criteria. The "logsig" function is used for the units for all the neurons except for those in the input layer. The 
neural network is trained offline. In this regard, different configurations are tested and the best suitable 
configuration is selected based on the accuracy level required.  

 
 

 
 
 
 
 
 
 

Figure 6. Multilayer Feed-forward Network used in the training stage 
  
 

 
Figure 7-a. Absolute error values for all data used in the training step. 
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Figure 7-b. Absolute error values for all data used to test the neural network 

 
 
Table (1) shows the performance of various network structures where the network is specified by the number 
of inputs, number of neurons in the first hidden layer, number of hidden neurons in the second layer, and the 
number of output neurons. For example 4×10×1 means that the network has four inputs, ten neurons in the 
first hidden layer and one output neuron. The training and test error computed as the absolute average of the 
error for all training data and test data respectively as shown in figures (7-a, b).  The network with one hidden 
layer and 5 hidden neurons is selected in our simulation which gives minimum errors for both training and 
test data.  
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Table 1. Training and test errors for various network structures 
Network Structure 

NI×NH×NO 
Training Error Test Error 

4×3×1 0.0678 0.0655 
4×5×1 0.0484 0.0534 
4×10×1 0.0459 0.0599 
4×5×3×1 0.0842 0.1134 
4×10×3×1 0.0820 0.1118 

 

 
Table (2) Comparisons between NN output and measured values for various patterns in the test data 

Test Pattern NN Output Measured Output 
[0;50;0.05;3] 7.9 7 
[25;500;0.1;1] 8.3 8 
[50;50;0.1;5] 9.4 8 

[100;500;0.05;5] 13 11 

 
 

Table (3) Estimated NN output for new unseen data 
Test Pattern NN Output 

[0;400;0.05;1] 7.9149 
[25;400;0.05;1] 9.9137 
[50;400;0.05;1] 11.9198 
[75;400;0.05;1] 13.4964 
[100;400;0.05;1] 14.5006 

 
 
In order to measure the generalization capability of the neural network, the output of the neural 

network is compared with the actual measured outputs. The results in Table (2) shows that the estimated 
output of NN is very near to the measured one which prove the validity of NN to model the data. The results 
obtained from applying ANN show that it can be used to model the test data with accuracy of 96%. Table 3 
shows the estimated results of flashover voltage for different unseen inputs. For example the input 
[25;400;0.05;1] means that for SiR=25%, Water Conductivity=400µS/cm, Volume of Water 
Droplets=0.05ml, and Number of Droplets=1, the estimated flashover voltage equal 9.9137 KV. By 
analyzing the collected data from laboratory measurements these inputs are closer to the measured values 
SiR=25%, Water Conductivity=500µS/cm, Volume of Water Droplets=0.05ml, and Number of Droplets=1, 
which give a measured flashover voltage equal 10 KV. Its mean that the estimated value obtained from 
neural network is a correct value compared with the measured value which is near to this point.  By 
increasing the water conductivity from 400µS/cm to 500µS/cm, the flashover voltage increases from 9.9137 
kV to 10 kV at fixed other parameters such as; SiR, Vol. of Droplets and No. of Droplets.  
 
 
7.  CONCLUSION: 

In order to improve the long-term electrical performance of hydrophobic composite insulators, 
silicone rubber content (%) should be increased. In this study the flashover voltage on the surface of 
hydrophobic polymer insulators is estimated using neural network. A multilayer feed-forward back-
propagation neural network has been used in this work. That model shows a good ability to estimate the 
flashover voltage to select hydrophobic surface insulators. The advantage of the use of ANN in the design 
and optimization is that ANN is required to be trained only once. After the completion of training, the ANN 
gives the flashover voltage for any desired mechanism on hydrophobic polymer insulators. Thus, this model 
can be used confidently for the design and development of insulators. Developed model has very fast, reliable 
and robust structure.  An accuracy of 96% is obtained from applying ANN which shows that it can be used as 
a successful model for predicting flashover voltage. These results prove that ANN can be exploited to 
evaluate the electrical performance of hydrophobic polymer insulators and predicts the best hydrophobic 
composite surface that withstands higher flashover voltage under wet contaminated weather condition. 
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