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1. INTRODUCTION

Power transmission at high voltages has acquiradiderable prominence in the recent times. It has
become essential to design and develop compactefiestive and reliable insulation structures. Witie
advancement in polymer technology it has becomsiplesto design insulation structures with the ewleal
mechanical, electrical and thermal properties. Ui$e of polymeric insulators for outdoor transmisdioes
has rapidly increased during the last two decadieth service experience and the laboratory tests
demonstrated a better performance in contaminateditons [1]-[3].

In recent times, composite insulation materials ggrining importance as outdoor insulating
structures especially the silicone rubber. Silicondber has good pollution performance and high
hydrophobicity. In addition, it has high dischamgsistance. Water droplets on a polymeric surfaceease
locally the applied electric field. Local field ansifications lead to partial discharges (PD) antb/calized
arcs, causing damage to insulating materials [B]-[7
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The values of flashover voltages of polymer ingara can be affected with some parameters such
as; conductivity (uS/cm) of water droplet, numbg&dimplets, volume of water droplet (ml), and pertege
of silicone rubber content (%) to the compositeypwr. Hydrophobic polymeric surfaces are charaxgeri
by a low surface conductivity which in turn givesoav discharge activity and a higher flashover agé.
This holds also for polluted environments. Reduegdrophobicity implies a higher risk for flashowarthe
insulator. Hydrophilic materials, on the other haade very sensitive to polluted environments, anel
characterized by a significant activity of locascharges [8].

Artificial neural networks (ANNs) can be used inoplems requiring function approximation,
modeling, pattern recognition and classificatiostireation and prediction, etc. [9]. In the field bigh
voltage insulators, ANNs can be used to estimatgtilution level [10], [11], to predict a flashowenltages
[12],[13], to analyze surface tracking on pollutedulators [14] and also to estimate the flashaedtage on
hydrophobic polymer insulators which will be exapdnin this paper. Multilayer perceptron is a famous
supervised neural network which is used as a uséeunction approximator. Backpropagation learning
algorithm is used successfully to train the netwathich is subsequently used to estimate the flashov
voltage [15]. In this paper, the trained networkswemployed to evaluate the electrical performarfce o
hydrophobic polymer insulators and predict the bgstrophobic composite surface that withstands drigh
flashover voltage under wet contaminated weathedition.

2. EXPRIMENTAL PROCEDURE
2.1 Material Details

Composite polymeric insulators were tested durimg study. The composite was consisted of
EPDM rubber with various content (%) of SIR (0, 88, 75 and 100%), respectively.

2.2 Test Procedure

The ac 50 Hz high voltage was supplied from simgiase high voltage transformer (150 kV, 15
kVA). Two copper electrodes used as a shape of dydilfidrical rounded edges. The electrodes had very
smooth without any irregularities to avoid the noriform electric field [16].

2.3 Specimens Dimensions

The dimension of each specimen is 80 mm lengthd® width and 3 mm thickness. The water
droplets were put on the surface of specimen wilrange. The volume of water droplets are 0.0%,ahd
0.15 ml. The conductivity of the water droplets &fe 500 and 1000 pS/cm. The distance betweemihe t
parallel electrodes is 40 mm. Number of water detspbn the surface of each composite specimen,8e 1
and 5 droplets. To simulate the surface of compasitoutdoor wet and fog weather condition, angta w
10° from the horizontal level was used. The highage between electrodes increased gradually thwil
flashover voltage (kV) occurs.

3. BACKGROUND ABOUT ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are computational netk®mwhich attempt to simulate the structure and
the behavior of biological nervous system. An mitif neural network consists of a set of procassin
elements called neurons that interact by sendigigasito one another along weighted connectionsTBg
connection weights, which can be determined adelgtispecify the precise knowledge representatiois.
not possible to specify the weights beforehandabse the knowledge is distributed over the network.
Therefore, a learning algorithm is adopted in whtoh strengths of the connections are modifiedctoese
the desired form of activation function.

The learning algorithms are divided into three gatis: supervised, reinforced and unsupervised.
The type of error signal used to train the weightshe network defines these three types of legrnin
supervised learning, an error scalar is providadefaich output neuron by an external ‘teacher’, evinil
reinforced learning the network is given only akglbpunish/reward signal. In unsupervised learnimy,
external error signal is provided, but instead rimi errors are generated between the neuronshvéri
then used to modify weights [9]. In supervised i@y the weights, connecting neurons are set omases
of detailed error information supplied to the netkvby an external teacher. In most cases the n&tigor
trained using a set of input-output pairs, whicé examples of the mapping that the network is reduio
learn to compute. The learning process may thezdferviewed as fitting a function, and its perfoncecan
thus be judged on whether the network can learrddséred function over the interval representedhsy
training set, and to what extent the network catsssfully generalize away from the points thatkis been
trained on [13]-[15].
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3.1. Multilayer Feedforward Network

The simplest network capable of supervised learisragthree-layer feedforward network consisting
of an input layer, hidden layer and an output lafgch neuron of the hidden layer receives a sifyoali all
input neurons along connections with modifiable gi#s. But such three-layer feedforward networks can
compute only linearly separable functions. Howeitenas also been shown that a feedforward netwidttk
more than one hidden layer of adaptive weightscoampute very complex functions

The neurons in the network can be divided intogHhegers: input layer, output layer and hidden
layers (Figure 1). It is important to note thatféedforward networks, signals can only propagatenfthe
input layer to the output layer via one or moredieid layers. It should also be noted that only tides in the
hidden layers and the output layer, which perfootivation function, are called ordinary neuronsic®i the
nodes in the input layer simply pass on the sigfmals the external source to the hidden layer, #reyoften
not regarded as ordinary neurons.

Ouiputs

Inputs

Hidden Layer

Figure 1. Architecture of three layers Feedforwisdedwork.

3.2. Input-Output Data Normalization

Since the input and output variables of the ANNeéhdifferent ranges, the feeding of the original
data to the network, leads to a convergence praltamobvious that the output of the ANN must faithin
the interval of (0 to 1). In addition, input sigaalhould be kept small in order to avoid a satonagiffect of
the sigmoid function. So, the input-output pattears normalized before training the network. Noinsdion
by maximum value is done by dividing input-outpariables to the maximum value of the input and outp
vector components. After the normalization, theutrgnd output variables will be in the range ofd@).

4. EXPERIMENTAL MEASUREMENTS

The ac (50Hz) flashover voltages (kV) measuremdmatge been recorded for five composite
polymer insulators. SiR content (%) in EPDM insatatare (0, 25, 50, 75and100) %.

Figure 2 shows the flashover voltages (kV) of EP@ith different SiR contents (0, 25, 50, 75 and
100) % at various number of water droplets (1, 8 &nhunder constant conditions such as; volumeaohe
water droplet (0.05 ml) and water conductivity (68/cm).

From this figure it can be noticed that, the petagea of SiR content (%) plays an important role on
the flashover voltage (kV) values. The flashoveltages are 8, 11, 14, 16 and 19 kV at 0, 25, 50anth
100% SiR content in EPDM respectively, at one watewplet with 0.05 ml volume and 50 pS/cm
conductivity. Increasing the number of water drégpfeom 1 to 5 droplets decreases flashover vostagehe
same volume and water conductivity. For example,ftashover voltages are 8, 7 and 6 kV at 1, 3%&nd
water droplets under the same condition of waterdaootivity and volume of water droplet at 0% of SiR
content in EPDM. At one water droplet with conduityi of 50 pS/cm, flashover voltages for differeiR
content (%) EPDM for various volumes of water detffl.05, 0.1 and 0.15 are illustrated in Figure 3.

It can be seen from this figure that, at highertennof SiR (100%), the flashover voltage decreases
by increasing the volume of water droplets. Thisangethat, increasing the volume of water drople®,0
0.10, and 0.15 ml in specimens of 100% SiR contegister 19, 17 and 15 kV respectively under water
conductivity 50 uS/cm.

Figure 4 shows the relationship between the flashwultages and SiR content in EPDM at various
water conductivity 50, 500 and 1000 uS/cm for 5ewalroplets with constant volume of each dropletagq
to 0.15 ml.
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Figure 2. Flashover voltages for different SiR emt(%) in EPDM specimens at various number of wate
droplets (1,3 and 5) with (0.05 ml) volume of wadeoplet and (50uS/cm) water conductivity.

22

20

<+ + 0.05ml

18
/ ||
16 — m 0.10ml

= //-/
=
. &
e 14 /;/ 0.15 ml
= 12
=
g 10
(=
E 3 4
= =

q

2

o

o 20 20 60 80 100

SiR Content (26) in EPDM

Figure 3. Flashover voltages for different SiR emnt(%) in EPDM specimens at various volumes ofwat
droplets (ml) for one water droplet with (50uS/om@ter conductivity.
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Figure 4. Flashover voltages for different SiR emt(%) in EPDM specimens at various water congitgti
(uS/cm) for 5 water droplet with (0.15 ml) volumievaater droplet.
It can be noticed from this figure that, the valaéslashover voltage decrease 8, 6 and 4 kV at
water conductivity 50, 500 and 1000 uS/cm, respelsti under 5 water droplets with 0.15 ml volume fo
specimen of 50% SiR content in EPDM. It can be deam the experimental work that, the hydrophobic
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surface of composite polymer insulators were prowed effect on the values of flashover voltage. The
electrical performance improves with increasing #ileeone rubber content. At weather of wet cormditi
with high salinity, the hydrophobic surface withsda the flashover voltage.

5. MECHANISM OF COMPUTING FLASHOVER VOLTAGES
The configuration in figure 5 shows different pamers affecting on the values of flashover
voltages of composites rubber. Various parameters a
i- Silicone rubber content (SiR %) in EPDM rubber yitag from 0% to 100%.
ii- Water conductivity {S/cm), 50, 500 and 10QG5/cm.
iii- Volume of water droplets (ml), 0.05, 0.10 and 05
iv- Number of water droplets, 1, 3 and 5 droplets.
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Figure 5. Diagram illustrates the mechanism of catimg flashover voltages.
The flashover voltages (kV) can be proportionahviR content (%), water conductivityS/cm),
volume of water droplet (ml) and number of watesplets according to the proposed function:

SiR (%)
Flashover Voltage (kVy No. of droplet*Vol.droplet(ml)*water CondiS/cm)

6. DEVELOPMENT OF THE NEURAL NETWORK FOR FLASHOVER VOLTAGE
The purpose of the ANN developed is to estimateflighover voltage from the input data, which

are obtained from previous experiments results.

1. Input Selection
The inputs to the neural network ANN are siliconblrer content (SiR %) in EPDM rubber, varying

from 0% to 100%, water conductivity$/cm), 50, 500 and 10005/cm, Volume of water droplets (ml),
0.05, 0.10 and 0.15 ml, Number of water droplets3 Bnd 5 droplets. The output of the neural nétwor
model consists of one neuron representing the dlashvoltage for a specific operating condition.eTh
chosen input data were divided into two groups tthiming group, corresponding to 50% of the pateand
the test group, corresponding to 50% of patterasthat the generalization capacity of network coloid
checked after the training phase. The output ohthaal network model consists of one neuron remtasy
the flashover voltage for a specific operating dtod.

2. Selection of ANN
The ANN used is the multi-layer feedforward typethwone or more hidden layers represented in

Figure 6. The number of units in each hidden layetetermined experimentally, from studying thewwek
behavior during the training process taking intosideration some factors like convergence rateeanat
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criteria. The "logsig" function is used for the tsnfor all the neurons except for those in the tdayer. The
neural network is trained offline. In this regadifferent configurations are tested and the beghisie
configuration is selected based on the accura®t lequired.

SiR%
Flashover Voltac

»
»

Water Conductivity

Vol. W. Droplets

No. W. Droplets
Figure 6. Multilayer Feed-forward Network usedtie training stage
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Figure 7-b. Absolute error values for all data usetest the neural network

Table (1) shows the performance of various netvatiiictures where the network is specified by thelner

of inputs, number of neurons in the first hiddeyela number of hidden neurons in the second lame,the
number of output neurons. For example 4x10x1 méaatsthe network has four inputs, ten neurons é th
first hidden layer and one output neuron. The ingirand test error computed as the absolute averiatpe
error for all training data and test data respetfias shown in figures (7-a, b). The network witie hidden
layer and 5 hidden neurons is selected in our sitiml which gives minimum errors for both trainiagd
test data.
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Table 1. Training and test errors for various neknsiructures

Network Structure Training Error Test Error
NIxNHxNO
4x3x1 0.0678 0.0655
4x5x1 0.0484 0.0534
4x10x1 0.0459 0.0599
4x5x3x%x1 0.0842 0.1134
4x10%x3x1 0.0820 0.1118

Table (2) Comparisons between NN output and medstateies for various patterns in the test data

Test Pattern NN Output Measured Output
[0;50;0.05;3] 7.9 7
[25;500;0.1;1] 8.3 8
[50;50;0.1;5] 9.4 8
[100;500;0.05;5] 13 11

Table (3) Estimated NN output for new unseen data

Test Pattern NN Output
[0;400;0.05;1] 7.9149
[25;400;0.05;1] 9.9137
[50;400;0.05;1] 11.9198
[75;400;0.05;1] 13.4964
[100;400;0.05;1] 14.5006

In order to measure the generalization capabilftghe neural network, the output of the neural
network is compared with the actual measured ostplite results in Table (2) shows that the estithate
output of NN is very near to the measured one wpicive the validity of NN to model the data. Theulés
obtained from applying ANN show that it can be usednodel the test data with accuracy of 96%. T&ble
shows the estimated results of flashover voltage different unseen inputs. For example the input
[25;400;0.05;1] means that for SiR=25%, Water Candity=400uS/cm, Volume of Water
Droplets=0.05ml, and Number of Droplets=1, the mated flashover voltage equal 9.9137 KV. By
analyzing the collected data from laboratory measients these inputs are closer to the measuredsvalu
SiR=25%, Water Conductivity=500uS/cm, Volume of @rabroplets=0.05ml, and Number of Droplets=1,
which give a measured flashover voltage equal 10 K& mean that the estimated value obtained from
neural network is a correct value compared with mheasured value which is near to this point. By
increasing the water conductivity from 400uS/cnb@uS/cm, the flashover voltage increases from3.91
kV to 10 kV at fixed other parameters such as; $i®, of Droplets and No. of Droplets.

7. CONCLUSION:
In order to improve the long-term electrical penfiance of hydrophobic composite insulators,
silicone rubber content (%) should be increasedthia study the flashover voltage on the surface of
hydrophobic polymer insulators is estimated usireural network. A multilayer feed-forward back-
propagation neural network has been used in thik.wbthat model shows a good ability to estimate the
flashover voltage to select hydrophobic surfacelatisrs. The advantage of the use of ANN in thegtes
and optimization is that ANN is required to bened only once. After the completion of trainingg tANN
gives the flashover voltage for any desired medrmron hydrophobic polymer insulators. Thus, thisiato
can be used confidently for the design and devedoprof insulators. Developed model has very fadigible
and robust structure. An accuracy of 96% is olthiinom applying ANN which shows that it can beduas
a successful model for predicting flashover voltagbese results prove that ANN can be exploited to
evaluate the electrical performance of hydrophqimtymer insulators and predicts the best hydrophobi
composite surface that withstands higher flashoetiage under wet contaminated weather condition.
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