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1. INTRODUCTION

A Wireless Sensor Network (WSN) is formed by huddref small, low-cost nodes which have
limitations in memory, energy, and processing capdd]. In this type of networks, one of the main
problems is to locate each node. The vision of masgarchers is to create smart environments, altaatr
through planned or ad-hoc deployment of a potdntlatge set of sensor nodes, each with transceifcar
wireless, short-range communication, capable oédety environment conditions such as temperature,
movement, light, acoustic events or the presencecesfain objects. WSN will enable fine-grained
observation and control of the physical world. Thturistic scenario in sensor networks appearsaigd
numbers of unattended autonomous nodes which @perat dynamic environment. This kind of sensot wil
be able to organize itself. It will be aware ofptsysical position.

The sensor nodes will carry out dynamic tasks dlistributed form, very frequently confronting
change in the topology network and failures inrieéwork nodes due to the lack of power, physicahaige
or environmental interferences. These nodes wilore environment events like temperature, pressure,
humidity, vehicular movement, noise levels, liglgticonditions, the presence or absence of certaitskof
objects, acoustic events, and mechanical stresdsledan attached objects, and so on. We can say that
localization will act as a bridge between the \ftiand physical world [2]. Evaluating the relative
performance of localization algorithms is importémt researchers, either when validating a newrélyn
against the previous state of the art, or when singoexisting algorithms which best fit the reqments of a
given WSN application. However, there is a lackuaffication in the WSN field in terms of localizati
algorithm evaluation and comparison. In addition, standard methodology exists to take an algorithm
through modeling, simulation and emulation stages| into real deployment. As a result it can bedhar
quantify exactly how and under what circumstanass algorithm is better than another. Moreover, diagi
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what performance criteria localization algorithme to be compared or evaluated against is impoftarihe
success of the resulting implementation given thieferent applications will have differing needsn&
localization algorithms are expected to be usedesl applications, it is not conclusive to verifyeir
performance in simulation only.

2. LMPORTANCE OF LOCALIZATION

Sensors are used for gathering environmental dath €s temperature, pressure, humidity,
radiosity. The collected data assist in prediclikgly occurrence of events such as bush fire,a-aditive
leaks, failures in structures, and many other irdpendisasters including earthquakes, floods, asdther
changes. Early prediction of such events helpdanrpng adequate response system that may eitbeeptr
those events or mitigate the consequential damadesresponse system should have the ability taeixt
context from the gathered sensory data if it wereredict the events correctly and operate at xpected
level of efficiency. A context is defined by ambies among which location (both spatial and tempasal
the most critical ingredient [3].

WSNs with sensing capabilities can gather vital usicrelated metrics such as radio
communication, signs of accelerated activitiesyigorous movements in an area to aid in develoging
security response and advanced warning system.thiBge sensed metrics are useless unless they are
accompanied by corresponding location informatidithough location information can be fed manuaity,
may not be feasible in a large deployment aredt Banecessary to develop a system that can atiwatig
update location information of all nodes in the ldgment area.

Navigation and vehicle tracking is another arearahbe use of WSNs is found to be extremely
useful. Vehicle tracking with autonomous interceptimechanism can be deployed in an outdoor area. It
senses entry as well as movement of an offendiaglezvin the area. A cooperative mobile agent may be
dispatched for intercepting the evader as soorets detected before any damage is done. The sfudcess
realization of such a tracking and interceptiontexysis dependent on the location information in tieos.
First, the sensors must be able to detect the ewdsoon as it enters the area and be able toitratile
the evader continues to move around in the are@ruodservation. Second, the update on the location
information of the evader must be routed to intetiogg mobile agent so long as it continues to paire
evader. Apart from context-related computationapplication level tasks discussed above, the kriydef
sensor locations is also essential for networkllegerations in WSNSs.

In this paper, we attempt to review the existingréiture with emphasis on the metric of sensor
localization techniques.

3. METRICSIN LOCALIZATION

For the different ways of estimating location infa@tion, we have to name metrics to distinguish
the similarities and divergences between diffegproaches. In this section we present the mostatlyp
metrics to classify different techniques.

3.1. Localization Accuracy

The most important metric for localization techrégus accuracy and precision [3]. We can define
accuracy as how much the estimated position del/faben the true position is. Precision indicates/taften
we expect to get at least the given accuracy famgte 20 cm accuracy across 95% of the time.

Accuracy of estimated locations obtained from wasidocalization schemes. According to the
localization process, the sources of localizatimeremay include physical sources, localizationoaittpms,
and refinement process [4, 5]. The errors due ysiphl sources are represented by wide range séaaind
gquantization losses. Ranging techniques vary frdtrasonic to radio, and to laser, etc. A summarython
range accuracy was presented in [6]. The mostctitteaamong simulations are the ones with low-cost
ready-to-use features like time of arrival (TOA)uitrasonic signal and radio signal strength (R&)adio
signal strength indication (RSSI). The only concabout these techniques is that they produce higbilyy
measurements and are over sensitive to environheffeats [7].

Localization algorithms encounter two types of ersources. One is system error, which comes
from the localization algorithms themselves thatrkwvevith underlying assumption of accurate range
measurement or range-free features. The other esairerror is related to connectivity and the fi@etof
nodes serving as anchors. The last two metrics baweficant impacts on the performance of locdloa
algorithms. The effect of system error becomes gealale, when both distance and angle with orietati
are available. But the size and the cost of theware capable of measuring distance and angle prsueh
system from implementation, especially for denseNA/§8].
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[t is of particular interest to study the impactrahge errors on the performance of localization
algorithms, because range errors are inherent tdl&\nploying simple and low-cost range measurement
hardware. According to the empirical study on timpact of range errors on multihop localizations fBgh
density and Gaussian noises are the two prereegiifir the noisy disk model to work. The study also
suggests statistical approaches fix the problenitesbfrom range errors.

Cramer—Rao lower bound (CRLB) is commonly adoptedhie error analysis of the localization
schemes. It is a lower bound on the variance of ébémator that estimates the locations. Given the
knowledge on the distribution of measurementss ishown in [10-12] that the bound on the localarati
error can be obtained through calculating the CRLIBerefore, the localization schemes are able &tuate
their performances by comparing the localizatiocusacy with the corresponding CRLB.

3.2. Scalability and Autonomy
A location-sensing system may be developed to s, objects, people, assets or animals on the

surface of the earth, in a city, buildings or igiagle room. We can classify the location-sensiygiens in a
rough manner into systems which work outside amidén areas [13]. This classification lets us idgnti
special problems that the system will have to agkirsuch as diffraction, multipath and interference
problems. Besides, the number of objects in theesyplays an important role because every systemitha
own limit to find a number of objects per time wihgiven amount of infrastructure per area. An irtgott
consideration in the location-sensing systems iselect the best-fit radio frequency technologggcsithe
increase of the objects to be localized in the netywdemands for more communication and that cailgest
the channel if the threshold is exceeded. Thisadttaristic is also known as responsiveness or sagnff]
and is defined as how quickly the location systenpots the location information.

The degree of autonomy has some of the most significonsequences in the system design; this metric
is closely related to the scalability of the syst&kfe can say that a system has high autonomy wiea ts
little or no human intervention necessary to omethae system and the nodes act as totally indepénde
entities [14]. The autonomy of a system is achiettedugh the use of extensive and sophisticateztnat
processes that make their own coordination possitie self-coordination of the network is important
because it is closely related to the possibilityetdend the system. We classify the autonomy alifd se
organization into centralized or distributed systena rough manner, that means, the system couldayr
not require the help of a central entity to monaad control the activities of the elements.

3.3. Communication Costs

We can evaluate the cost of the location sensiatgsyin different ways; including cost in terms of
time spend for installation, money, computatiorfédre or energy [15]. The time cost of the systemliides
factors such as the length of the installation psscand the needs for system administration. Tiigataost
of the system can be directly mapped to the moresded to set up and operate the system such as the
amount of infrastructure installed, the salariesugdport personnel and the maintenance of therayste

The computational cost is a crucial metric andl@saly related to the location algorithm of the
system. It determines the architecture of the lonatensing system which can be organized eithex in
centralized or a distributed manner [16]. The @dified systems control and monitor the system fanst
with the help of a central engine. The systems whbe location algorithm is put into each node haf t
network to compute its own position is called dedized or distributed system. As energy efficigns
critical to WSNSs, it is necessary to consider tbenputation and communication costs of the locabrat
process in the evaluation of localization schemes.

Centralized algorithms like the SDP or MDS-MAP [Id§mand range measurements from all the
nodes. This is expensive in terms of forwarding nieasurements to the processing point and solvieg t
high-dimension matrix. Distributed algorithms, d¢w tother hand, require collaborations among neighyo
nodes to some extent. In particular, the multihmgalization faces the trade-off between the compatitn
cost on propagating the anchor locations and thgrege of accuracy. For the refinement on location
estimations, the number of iterations is apparemlythe center of the trade-off between the energy
consumption for refinement of localization resuaitsl the degree of accuracy achievable throughimefin

3.4. Network and Anchors Density

It is worth noticing that localization algorithménays require a certain level of connectivity [18].
So, localization schemes are based on connectiviigge measurements, angle information, or any
combinations thereof. The discussions on the Ipatitin algorithms suggest that dense networks tead
better localization performance. However, a deretevark does not necessarily guarantee high accuracy
location estimations. The density of the networlsaally represented by the number of nodes wihiarea
or the radio range of nodes. The anchor-baseditatiain schemes, aiming at providing absolute locat
require a high density of anchors to ensure lowlle¥localization errors [19].
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4. CONCLUSION

In this paper we presented, different methods fglément localization and the main metrics that a
system designer has to take into account to uradetstnd value the different location-sensing system

In the simulation results of various localizatiarthemes, where the accuracy was examined through
the trade-offs between accuracy and measuremefrpance, percentage of anchors, deployment of
anchors, density of non anchors, etc. Besides ralydgenerated networks, a typical deployment ofesoid
the grid of non-anchor nodes within a particulagaarThe localization accuracy of a solution is Ugua
quantified using the average Euclidean distancevdrat the estimated locations and the true locations
normalized to the radio range or other system egtior mobility-assisted localization, the effe€inode
density is not as important as in static local@atscenarios. In addition, communication/ compatatost
may not be of same importance to the off-line satiahs as to the real implementations.
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