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The objective of this work was to develop a varietycontrol systems for a
Stop-Rotor Unmanned Aerial Vehicle (UAV) in hovéglit. The Stop-Rotor
UAV has capabilities of Vertical Take-off and Landi (VTOL) like a
helicopter and can convert from a helicopter magart airplane mode in
mid-flight. Thus, this UAV can hover as a helicap@nd achieve high
mission range of an airplane. The stop-rotor condamplies that in mid-
flight the thrust generating helicopter rotor st@psl rotates the blades into
airplane wings. The thrust in airplane mode is tpeovided by a pusher
propeller. The aircraft configuration presents ueigchallenges in flight
dynamics, modeling and control. In this paper ahmatatical model is
derived, and then the model is simulated with nereznitial conditions.
Various control systems are then implemented. Tbetrol techniques
utilized are a linear control, optimal linear caritand a nonlinear control
with the objective of stabilizing the UAV in hovéiight. Settling time and

control effort are then compared across the diffecentrol systems.
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1. INTRODUCTION

There have been countless efforts to develop r@nafti that has the versatility of a helicopter and
the endurance, range and speed of an airplane.ir@mafa with such capabilities would be considesad
ideal aircraft. A promising effort is the concept @ stop-rotor configuration. The stop-rotor cortcep
incorporates the flight characteristics of a hglieo and of an airplane. However, unlike prior més such
as a tilt-rotor aircraft, the stop-rotors’ thrustngrating device in both flight modes is uncompsadiin
terms of performance. The stop-rotor concept findd by the method in which it converts betweea th
flight- modes, thus the rotor that provides thrimshelicopter mode is stopped in mid-flight andsitthen
used as a lifting surface in fixed-wing flight.

Currently, there are two types of stop-rotors, beig of radial-flow conversion. In radial stop-
rotor design approach the rotor disc is parallehi air-flow direction during conversion from rotanode
to fixed-wing mode. A radial-flow stop-rotor forcéise airfoil to experience approximately 180° chany
air-flow direction during conversion between flighodes. This has resulted in very serious comprsnis
and consequences including 50% chord-wise pitchixig placement.. In the development this aircift,
design induced extreme pitching moment acting erfulselage which caused it to crash [1]. The wayiad
the design flaw of a radial-flow conversion is &pdrt from this flow conversion and approach aalafiow
conversion of stop-rotor. The axial-flow conversistop-rotor design utilizes the process of feattgeor
pitching propellers. In this stop-rotor flow consim the air-flow impinging upon the rotor disc m@ais
perpendicularly, aligned with the rotational axiktbe rotor. The principal advantage of an axiawfl
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conversion compared to the radial flow conversisrthiat the a-flow impinging on the airfoil does n
change direction, so the airfoil can have convewti@rofiles with aer-elasticaly stable quarter chord pitc
axes.

The focus of this paper will be on the developnara mathematical model and implementatiol
a hover control system for the S-Rotor UAV, which is the first and only staptor concept where the axi
flow converson approach is advanced. The design of this UA¥sents unique challenges in flic
dynamics, modeling and controls. The objectivehis tvork is to derive and simulate a mathematicadieh
of this unique aircraft in hover flight. In additip variouslinear and nonlinear control methods will
implemented to stabilize the aircraft in hover liiginder no-zero initial conditions. Comparison of t
control methods will be drawn across control effartd settling time of stabilization. The papeofganized
in the following form. First, the St-Rotor UAV design is briefly introduced and derigati of the
mathematical model is presented in Section 2. @amentation of a linear control, optimal lineantrol
and nonlinear control are presentecSection 3. Simulation and results are presentesk@tion 4. Finally
closing remarks are presented.

2. PROBLEM STATEMENT

2.1. Stop-Rotor UAV
The unique the design of the S-Rotor consists of four major components:

1. Fuselage accommodates the engirrotor shaft, clutch and any electrical and navigzl hardwart

2. Wings/Bottom Rotor -are of a conventional NACA 0012 airfoil. In helidgep mode the wings al
feathered and act as a rotor to cot-act the torque from the tail rotor, while in ainpdanode they act
like conventional fixedwings

3. Tail Rotor -also comprises of a NACA 0012 airfoil. In helicopthe tail rotor is the sole thru
generating mechanism and is the only powered rbi@n airplane mode the clutch disengages pow
the tailrotor and the tail rotor is then feathered and m&suthe role of a tail in a conventional fi-
wing aircraft.

4. Push propeller its sole purpose is to provide thrust in airplarem The push propeller is optimized
pitch, blade area and twist to pide the best performance of speed, range and emch
Figure 1 illustrates these components in both yadad fixe-wing aircraft mode:

Rotary Aircraft Mode Fixed-Wing Aircraft Mode
- Push Propeller

Push Propeller -

=

Fuselsge il Tail Fins \ Wings (Identical left & right)

v - Fuselage |
\ . ‘

| L
B

>

Tail Rotor

v/ 7

- 7 7

Wing Rotor
Maca 0012 Airfoil

Figure 1. StogRotor UAV in rotary mode (left) and fix-wing mode (right

It is important to point ouhat from the left figure in Figurg it can be seen that there is a simila
of this rotary aircraft with a coaxial helicopt&imilar to a coaxial helicopter the S-Rotor UAV comprises
of two rotors. The tail rotor and the wing rotoythihis is where the milarities end. We will derive
mathematical model of the Stéotor UAV in hover flight. This model will give aimsight of the aircraft’
stability, controllability and flight dynamic

2.2. Mathematical M odel

The mathematical model primarily focu on the dynamics of theraraft in hover flight. The stc-
rotor is shown on left figure dfigure 2 along with the coordinate systems usedetive the equations
motion.
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E,

Figure 2.Stop Rotor UAV mod¢ representation (left). Thrust vectoraifove(tail) rotor (right) [2

£ = {Ex, E, E} is aright hand inertial frame, which is stationaith respect to the earth. Let C
{E1, B, Eg} be aright land body fixed frame, where CG s the fixed positioenter of mass of the aircr:
R, is an orthogonal rotation matri r: C—£ denotes the aircraft orientation with respect.t®herey, 6,

@ describes yaw, pitch, and roll angles respectivalie rotational matrix that aligns the bodyed frame
to the inertial frame wagiven by

Cohy G685 FEEY SS
RW.6.0)=Cos, 995+ 656 FE5 oSS
—Sp $G %6
1)

where. _ .59 ands, - qine - Dynamic model was obtained by with the followasumption:

« The blades of the twmtors are not hinged, but are directly attachethéohub. As a consequence e
rotor blades will always lie in a disk termed rottisk

e The tail rotor, denoted by ‘A’ foaboverotor, is assumed to rotate in an artiekwise direction whe
viewed fran above. The wing rotor, denoted by ‘B’ ‘bottomrotor, rotates in a clockwise directi

e It is assumed that the cyclic lateral and longitadlitiits of the tail rotor disk are measureablel
controllable. The tail rotor is the only rotor thegts injuts for flapping angles.

* The only air resistances modeled are simple dragefoopposing the rotation of the two rot

* Aerodynamic forces generated by the relative wiredret considere

* The interaction of the ground and aircraft is netgd.

e The irteraction of the two rotors acting in close proximwill not be considere

For simplification, the modewas split into two major sections. First sectamvers the translational
forces acting on the miraft. The second secticcovers the rotational dyamics. A complete model will the
be presented that combirtbese two sectior

2.2.1. Translational Forces

The forces acting on the fuselage he aircraft wee the forces produced by taboverotor, bottom
rotor and lastly due to gravity. Denoted T, the thrust generated by tldoveA’ (Tail) rotor while
denotedTg the thrust generated by tbottom ‘B’ (Wing) rotor. The thrust of th@bov¢ andbottomrotor
were described as the following:

To=TiE TR~ @
T=TE+TEE- 5 @

Since thebottomrotor has no swash plate. The thrust vector of thisr only has the san
direction, i.e. in the direction of the; axis, so Equatio&rror! Reference source not found. was rewritten
as:

—_13
Ts=-Tgg (4)

As described in [2]the thrust vector for thaboverotor wa defined as a function of the flappi

anglep. The angle representdie tilt of theaboverotor disk with respect to its initial ration plane. This
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angle consisted of angée(longitudinal flapping) and angle (lateral flapping) in which they were assumed
to be measureable and controllable variables. EBiguHustrates this correlation (right figure).
Using geometric calculus, the projection of theigh components of sTwas expressed as:

. —sin(a)Ctosp) co$a) O'sing ) s — cdsa0 cob( )
T - - sir @i @)EFT AT \/1 sif & ik b )El]T| TA_\/ t sif 41) sih if 5'”4 5)
The thrust vectof, was expressed as
To=G(a bl
(6)

where,
-sin(a)tosp)
a b = ! cos(a)lsinf ) (7)
\/1 sin® (a) Csirf 6) -cos(a) Ccosb )
Lastly, the final force applied to the Stop-Roto@NUwas gravitational force given by:
fo =05 ®)

where, m defines the total mass of the aircraft amd is the gravity constant. Equation

Error! Reference source not found. is given in the inertial fixed frame £. So thearr@l total force applied

to the aircraft was represented by F:
F=Tp+Tg+ f,

9)

F =RG(a b)(T,|-R T §+ mgE (10)

This is the representation of F on the inertiairfea

2.2.2. Torquesand Anti-Torques

Due to the thrust3, andTg the torques were generated. The torques werdaodtlee separation
between the center of mass (CG) and the rotor hytendts were denoted as the torques produced by
andTg respectively.

Represented b, andlg were the measured distances from the CG to the btitheaboveand
bottomrotor respectively. So the torques applied todineraft were:

Ta=laxTh 75=lgxTy (11)

In addition, the aerodynamic drags acted on thersgbroduced pure torques which acted throughdta r
hubs. So the anti-torques were defined by:

QA:|QA|% Qs:_|Q3| & (12)
Lastly, the total torque applied to the aircraftsvexpressed in the body fixed frame as:
T=Tp+Tg+Q) B —| Q4 B (13)

2.2.3. Complete Dynamic M odel
By incorporating the total forces and total torqueee following complete dynamic model was
obtained in the inertial frame:

s=v (14)
mv =RG (a,b) [T, |- TSRE; + mgE, (15)
R=RQ (16)
1Q=-QxI1Q+1, +15 +|Q|E; ~|Qg|E;
7
In  the translation movement of the  aircraft, let .‘; c.f.( Equation

Error! Reference source not found.) defined the velocityy, of the aircraft's CG expressed in its inertial
frame £. In Newton’s equations of motiq = o x 10 + < denotesl otational component of movement
in a non-inertial frame, whet® was the angular velocity in the non-inertial framdefined the inertia of the
aircraft in its CG in respect to the body fixednfia andr represented the total external torque appliedhén t
body fixed frame.

Also it was important to define théte |R® and
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0 -0° Q2
Q= o® o -t (18)
02 o' o

The mathematical model presented above embodiesiythemics of the aircraft in vector form, but to
conduct simulations and analyze the dynamics ofatteraft this model was expanded using Newton-Eule
formulation, which is presented in the followinggen.

2.2.4. The Detailed M athematical M odel

The mathematical model presented in section 2.28expanded to Newton-Euler form to code and
simulate the dynamics of the aircraft in hoverhtigThe Newton-Euler model was expanded using ainees
assumptions, and equations previously stated iqure sections as well as using Figure 2 as airanaflel
representation. This model expansion was split twtw parts, one covering the translation dynamius the
other the rotational dynamics.
For the expanded mod®&,,, was defined as:

Gl UYIDPTBE FEET SLS
Rep(@04)=5C $98* 55 £ SF o5C
~Sp %% %6
where ¢ = cos@) and § = sin@) are used as before.

Rexp is @an orthogonal rotation matriR.. C—£ denoted the aircraft orientation with respec£to
The translation dynamics for the expanded NewtolefEuodel [3] in the fixed inertial frame £ were:

Ex =—B(oe)dm)+ (s 5+ 6 s 8)f B)+ (£ smrsfR-T)] @0
E=— (s a){T)+ (5 55+ 6 ) D)+ (sese oadf 2774 @D
€, =g+ d(9)(1)+(56){ B)+ (5 0 £- 7)] (22)

The expansion of the rotational dynamics in the tddewvEuler's model uncovered the body gyro-
effect, rotor gyro-effect, inertial-counter torgaed counter torque unbalance. So the rotationahmyes for
the expanded model in the fixed inertial frame £ewe

L@ =00 (1 =1 ) =0 $Q g+ fQ 4T3, (23)
|yyé=¢‘/j(|zz_l xx)+‘] #’Q g=J ;(OQ A+T1}-\) (24)
7/ :w(l ol yy) +Q A= Q¢ (25)

wherel,, ly,, I, were the moments of inertia of the aircraft akibiet CG; ds were the rotor inertias of the
aboveandbottomrotor respectively.

To obtain the thrust (T) and drag moment (Q) Fferaboveandbottomrotor, the momentum theory
was used, which is discussed in the following secti

(19)

2.2.5. Rotor Aerodynamics

For any airfoil at a certain angle of attack itlyitoduce a lift force and drag force. This is tfaea
rotor since it basically consists of airfoils piingt a one end and rotating about the pinned enahalyzing
the two rotors, we obtained the lift and drag feras in [4]:

dL:CLDl—Eb Q) kidr dD:CDE&Do Q) Odidr (26)
2 2

where G and G were the lift and drag coefficients respectivglywas the density of air; r was radius
location of the blade and c was the chord lengttheblade.
Since the objective were to obtain the verticalsh and horizontal drag moment produced by

blades both thrust and drag force have componaritsei vertical thrust since the blade is pitchragla &
illustrated in Figure 3.

Dynamics and Control of Vertical Takeoff and Lamdisnmanned Vehicle (Vargas-Clara)



602 O ISSN: 2088-8708

~
V=V+w

Disk Plane

Figure 3. Blade section view

Therefore, thrust force and drag moment were thewing:
dT = dL@os(g;) - dDDsir(g;) (27)

dQ= ( dLisin(p) + dD[tos((}))) r (28)

Substitute dL and dD into both dT and dQ and irdesgg with respect to the blade radius we
obtained:

0 :%CL pE,2 T, DR,fcos(é))-—; cDgomAZDcADRfsin(@) @

Equation (2) is thrust force for a single bladetuf aboverotor. We obtained the total thrust force
produced by thaboverotor by multiplying the equation by the numbebtddesn, in the rotor.

Tp = (%CL o 0,2 [k, DR,fcos(é:)—% Cop pR2,7 DCADRfsin(é)j Or (30)

wheren is 3, or 2 for either thaboveor bottomrotor respectively. The drag moment for bathoveand
bottomrotor was the following:

Qz(%CLDoEQZECDR“sin((Z))+%QDDOI:QZDCDF("COS(&))Dr (31)
To obtain the value of angular veloci@, for the aboverotor the trim condition during hover flight was
used:

Ta=mg (32)
Solve forQpa

Q, = /1 SR — (33)
\ 5c i, R cos§)- £ Co o 06, IR? si§)

To obtain the value of angular velocifyg for thebottomrotor the following condition was used:

Qu-Qs =0 (34)
Since in steady hover = 0, EquatiBnror! Reference source not found. resulted into the following:
Qa = Qg (35)

To solve for the angular velocity,Qz for the bottom rotor we solved Equation
Error! Reference source not found. for Qg that maded the conditidirror! Refer ence source not found.
true. SoQg was the following:

2 4
0y = |2 CalRa (36)
2 R

This concludes the mathematical model for the SRmger UAV. The next section will discuss possible
control options for controlling the states in thevér flight.

3. CONTROL METHODS

In this section, three control systems were created implemented to the nonlinear rotational
dynamics described in the previous section. Theethgontrol systems presented here consist of arline
controller, optimal linear controller and a nonkmecontroller. Their main objective was to stalglithe
rotational dynamics of the system.

3.1. Linear Controller
First, to create a linear controller for a nonlineystem the system was linearized about an
equilibrium solution. The linearized equations aftian were of the form:

IJECE Vol. 2, No. 5, October 2012 : 597 — 608
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¢'5=[|1 J(—JBQQB+JAGQA+TE\IA) (37)
(1 . . .
HZ(I_](JBWB_JA@ZA*'TMA) (38)
yy
(39)

w=[i](QA—QB)

To control the rotational dynamics the system comuiaputs were included in roll, pitch, and yaw
to stabilize the dynamics. With addition of the e¢oand inputs the linearized state equations took the

following form:

(b:(ll]H—JBmmB+JAmmA+TactRoll) (40)
. (1 : -
0= [|_] [(Jg @l = I A PR A+ Toet pitcn) (41)
yy
. 1
‘// = (_) qTactYaW) (42)

I zz
where, Tact Rolb Tact Pich @NdTaet yawWere command inputs for roll, pitch, and yaw resppely. The next step
for linearization of the system was to converbistate-space form.

0 1 0 0 0 0
Q 0 0 0 TIeQp+ I 2 00 (p
1] IXX @
d|e| |0 0 0 1 0 0Olg 3)
o] g Je%*Ia g 0 0 o|?
7 lyy 7
7} 0 0 0 0 01 7}
0 0 0 0 0

The system (3) was now_linearized. By analyzingeheations in yaw a_nd rate of yaw, we concluded tha
yaw is independent of roll and pitch, but roll apiich were dependent on upon each other. The linear

controller was of the following form:
X = AXx + Bu(t) (4)

where,x was a state rat,was the state matri was the controller matrix and(t)=Kx in whichK was a
matrix of control gains. With the above assumptitve controller was of the forme kx giving the
following state control inputs of:

Tact, = Ka* K2¢{+ KH+K 45"
-I—actpi[ch = K5¢+ K6¢+ K79+ KBH (5)

Tact,aw = Kgl// + Kl(#/

where:
K, = K1+K7 K,=K2+K8 K3=K3K9 K,=K 4K 1(

Ks =K13+K19 Kg=K14K 20 K;,=K 15K 21Kg=K 16K 2 (6)

Ko =K29+K35 K;;=K 30+K 36
The approach here was to determine the gainseimitrixK that produced all negative real parts for the
eigenvalues for the matr[>A—BK] . This proved to be rmatkballenging since the characteristic
polynomial was extremely intricate and long. Thetstgy was to obtain the characteristic polynortodbe
of the form:

3 A°+al°+ gl + 8P+ ad *+ ad+ &

(7
Then, using the stability criteria of Routh-Hurwénd Lienard-Chipart to obtain conditions for tteeng that

would yield the eigenvalues of matri[>A—BK] with negatieal parts. One of the possible solutions was

to use rate and state feedback type controller with
K; =0,K,=0,Kg=0,Kg=0 (8)
With the above assumption the state control inpuBquation (5) was reduced to the following:

Dynamics and Control of Vertical Takeoff and Lamdidnmanned Vehicle (Vargas-Clara)
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TactRD" = K1¢+ KZQ

Tact,, = Kr0+ Kgbl 9)

Tact,, = Kot + Koy
where K, Ky, K7, Kg, Ko, and Ky are all gains that can be selected. This allowgie command input of
roll, pitch and yaw for stabilization of those &t Through a number of trials the chosen valugkeofains
were determined. These gain values were chosea:to b

K,=-175 K,=-58 K,=-175 Kg=— 5¢ (10)

Kg=-1 Kyo=-2

These gains resulted in the following closed lomervalues for the system

A={-55.42+ 26.3% - 55.42 26.84- 238 1i22- 258 .22 —1}T (11)
Upon selecting the non-optimal gains by trials thoee linear controller, the controller was implemezhinto
the nonlinear rotational dynamics. In doing thtswas possible to check whether the linear corgrolNas
effective at stabilizing the nonlinear rotationghdmics. So the nonlinear rotational dynamics ipooaiting
the linear controller was the following:

. 1 . . . :
= ﬁ {6 14y =1 22) =3 2 g+ O i+ K1+ K 20p)

= Iyy et (1,1 ) +3 2 g= Ipg82 5 + K3 + K 416) (12)

[IZZ {68 (1c=1,y)+ K5W + Ko@)

3.2. Optimal Linear Controller
An optimal linear controller was designed comprisof the linear controller described by Equation
(5). To design an optimal linear controller it detil selecting the gains that minimized the costfion:

3 (x(t),u(t)) ——D(T (tF) TH DX(tF) += J " X7 (0) [0 (1) + R @2 (t)dit (13)

whereH, Q andR were all posmve semi-definite matrices of siz&66H was assumed to be a zero matrix,
while Q andR were assumed to be identity matrices. Ma®ixvas multiplied by a factor of 100 indicating
the weight on the states. The best approach tomizdgei the cost function was to redua@) which as
previously mention was(t)=K (t)x(t). One method for finding the optimal feedbackngaatrix was utilizing
a nonlinear matrix differential equation, knowntls Riccati equation.

S(t) = -S(t) A - AT [5(t) +Q +S(t) BR B [5(t) (14)

The Riccati equation has only final conditions @ath be solved backward in time using numerical
integration. The solution of an optimal control wasluced by finding the matri&(t). The optimal gains
were therefore given by:

K ()x(t) = R™BTS(t)x(t)
(15)

Using MATLAB, a code was written to numerically égfrated the Riccati equation using ode45.
The resultsS(t) were then inputted into Equation (15). The tesled to the population of the matrix with
optimal gains:

497 6.31 503-133 0
497 631 503-133 O
0

-5.03 -1.33 4.97 8.99
K = (16)
-5.03 -1.33 497 899 0 0

0 0 0 0 707 7.5%
0 0 0 0 707 7.5%

Consequently the controller was of the fomk x givihg following state control inputs similar
to the ones in Equation (5). Where the gains im@@&y had the following values:
K,=-9.95 K,=-12.61 Ky;=-10.05 K,= 2.66 Kgz= 10.0!
Kg=2.66 K,=-995 Kg=-17.99 Kg=- 14.14K,,=- 15
17

S O o
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These were the optimal linear gains. The optimadr controller was then incorporated into the
nonlinear rotational dynamics as

o= % {6 (1, =1 22) =3 $2 g+3 fQ 4 K1p+K2[p+ K 3B+ K 418)
6= % oy (1,,10) +3 2 5= 3 g2, + K1+ K 20p+ K 3B +K 48)  (18)
w:(% §8(10c= 1) + K5 + K6

In this form it is clearly evident that the conteslinputs for roll and pitch were dependent onheac
other to stabilize the roll and pitch. It was aégsédent that yaw is independent of both roll andhpi

3.3. Nonlinear Controller

It can be noted that the linear control may worktba nonlinear plant but stability cannot be
guaranteed. Also as the initial conditions deviaben equilibrium solution the linear control maytneork
as the nonlinear effects become predominant. lerora achieve ‘global’ stability a nonlinear contmas
proposed. The approach here would be to desigmadméinear controller using Lyapunov approach. In
specifically the Lyapunov's direct method. This Inoet is widely used in the stability analysis of geai
dynamical systems. It makes use of a Lyapunovtfonc, , , . This scalar function of the state and time

may be considered as some form of time dependemgrgkized energy. The basic idea of the methdd is
utilize the time rate of energy change jn, . for aegivsystem to judge whether the system is stable or
not. The details about Lyapunov's method and Igtaliheorems can be found in the text [5]. Foriree&r
system where constant coefficients are concerndd,simple to find a Lyapunov function. Considbe
linear system

X(t) = Ax(®) (59)
where A is a constant matrix. A quadratic form,qf,, may be assumed as

V(x) =x"PX
where p is a real, symmetric and positive definiggn®. Then

V(x) =X"Px+x"Px = (Ax)"Px+xPAX (60)
or

V(x) =x" (ATP+PA)x (61)

According to the Lyapunov theorem for autonomousteys, ifV(X) is negative definite then the

null solution is asymptotically stable [6]. Théree, one can write [5]:
ATP+PA =-C (29)

where ¢ is a positive definite matrix. Equation)1®9called the Lyapunov equation. It has been
shown by Bertram and Kalma [Zhat if iz has eigenvalues with negative real p@symptotically stable),
then for every given positive definite matrix , theexists a unique Lyapunov matrix . In this study
matrix ¢ is always taken as the identity matrix. The follogiLyapunov function was selected that is
always positive definite.

V=@ +6%+y’+@p*+6%+y? (63)
whereV is Lyapunov function. The derivative of Equati&nror! Reference sour ce not found.
takes the following form:

V =2qp+ 2pp+ 206+ D6+ P+ Wy (64)
If  is negative definite, then the nonlinear rotatib dynamics will be globally asymptotically
stable. So the rotational dynamics forg, &, andy were stlgetl into Equation

Error! Reference sour ce not found. yielding.

/ :2_¢[9¢(|yy_|zz)_‘] BéQ gt J /QQ A+Ta°‘Ro”}+2m

IXX

L@ (1,1 0) + I o 5= I g it Ty ] +260 (20)

+%|:¢9-(|xx - yy)+Tact(aWj|+2¢”/I

We assumed the nonlinear controller of the form

Dynamics and Control of Vertical Takeoff and Lampgitnmanned Vehicle (Vargas-Clara)
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Tacty, = _Klg{/’ - K26".— K3¢._ K.
Tact,, = ~Ks@ — Kegp— K, ~ K (21)
Tacty, = ~ Kol = Kigf = Ky gy
where K through Kk are controllable gains. To determine the appréogrigins that would satisfy
condition for Lyapunov stability, assumptions (2dgre substituted into Equations(20). After the $itition

the gains were obtained as

Ki=lyy=l,, Kp=-d g gt 40 5 Ky =al,,
Ky =1« Ks=1,,71 « Ke=J gl g=J JQ , (22)
K, =al,, Kg=1,, Ko =1l y Kp=al,
Ky =1y,

where a is any number that is less than zero. By implenngnthese gains Equation (20) was
reduced to:
V = —2ag - 2a6% - 2a)?
(23)
Thus, Equation (23) will be always negative deérsatisfying the condition for Lyapunov stability.
The nonlinear controller along with the gains wagplemented into the nonlinear rotational
dynamics. Equation (69) illustrates the rotatiashahamics with the nonlinear controller.

(b: % qulﬂ(by" zz)_‘] BHQ B+‘] /QQ A_(Iyy_I zz)gw_(_‘ls EQB+JAEQA)H._aI xx(.a_l xxw)
6= ﬁ EQW(IZZ_IXX)-F‘]B@)B_J@A_(Izz_lxx)w_(JBmB_JAmA)Cb_alyﬁ_Iy)ﬂ)

w:( : {eB(1u=1yy) = (1 -1,) -2l =140

12z
(24)

4. RESULTSAND ANALYSIS

A code was written ilMATLAB that simulates the nonlinear rotational dynamigs. first, the
nonlinear rotational dynamics were simulated witm+zero initial conditions (IC) and uncontrolledhé’
rotational dynamics were clearly unstable with zene ICs. Figure 4 illustrates the unstable rotetio
dynamics with non-zero ICs. The next step was tplément the linear controller to the same nonlinear
rotational dynamics. So, the linear controller waasv introduced to the nonlinear rotational dynamidth
identical non-zero ICs. Figure 5 illustrates effetthe linear controller on the nonlinear rotaibdynamics.

In Figure 5, it can be noticed that the rotaticah@hamics were stabilized using linear, nonlineat an
an optimal linear control. In case of linear cohttbe rotational dynamics were locally stabilize@his
means that for a given “small” domain of attractite linear stabilized the nonlinear rotational ayrcs.
The linear controller also clearly exhibited setjltime issues. The settling time was most notileeabyaw,
which approximately took the controller 40 secotmstabilize it. The settling time could be a catreen
using insufficient gains, non-optimal gains or siynfhe fact that the linear controller was tryirgdontrol
nonlinear rotational dynamics.
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Figure 4. Uncontrolled nonlinear rotational dynasnigth non-zero initial condition

Roll
15
Nonlingar
10
= ‘ ___________ —— Linear
@ gl e Optimal Linear
2 k ------------ ;
I A — s :
LV i
0 2 4 60 80 100 120 140 160
Time [s]
Pitch
20
Nonlinear
=10 Linear
] o
@ A i Optimal Linear
j \c\ —
LY ' |
A0 |
0 2 4 60 80 100 120 140 160
Time [s]
Yaw
4
Nonlinear
=2 Linear
g l\¥ ------- Optimal Linear
T, T
=0 ;
2 |

0 20 40 60 100 120 140 160

80
Time [s]
Figure 5. Comparison between nonlinear versusdimegsus optimal linear controllers
Roll

— Nonlinear

Linear
....... Optimal Linear

3 100 120 140 160
Time [s]

Pitch

—— Nonlinear
0 —— Linear
------- Optimal Linear

Effort

T
— Nonlinear

Linear
------- Optimal Linear

Effort

0 2 40 60 100 120 140 160

)
Time [s]

Figure 6. Nonlinear, linear, and optimal linear woher effort

It is important to mention that in similar fashias the linear controller, the optimal linear cohghown in
Figure 5, stabilized the rotational dynamics logalis well, from the Figure 5 it was evident thia¢ toptimal
controller stabilized yaw faster than roll or pitas a result that yaw was independent of roll jgitch. In
roll and pitch the issue of settling time was stéry present. In the next paragraph the nonliceatroller
created was implemented to the same nonlineariontdt dynamics. This allowed us to compare the
performance of the linear controller, and optimakar controller against the nonlinear controllérwas
evident that nonlinear controller stabilized théatimnal dynamics better than the linear and lingatimal
control. It is important to note that the nonlineantroller not only stabilized the rotational dymias but in
addition made the rotational dynamics globally Eafhis means the rotational dynamics will alwdnes
stable even if large ICs are provided. The nonlir@mtroller exhibited some settling time. Thouginis
settling time of the nonlinear controller was muchaller than that of the linear controller or ogtlirfinear
controller. Figure 5 illustrates a comparison betwéehe linear controller, optimal linear controlkmd the
nonlinear controller at stabilizing the same rataéil dynamics with identical non-zero ICs. Inityjathe
effort for the nonlinear controller at stabilizitige three states (roll, pitch, and yaw) was moaa tiat of the
linear and optimal linear controller. As well, thenlinear controller demonstrated the most effortha
beginning as oppose to the linear and optimal limeatroller. The linear controller demonstrateahtcoller
effort throughout a larger range of time, while ggimal linear controller demonstrated the leasttller
effort.

5. CONCLUSION

Dynamics and Control of Vertical Takeoff and Lampgitnmanned Vehicle (Vargas-Clara)
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In this work, an analysis of dynamics and conthiliy of a multimode Stop-Rotor UAV was
presented. This axial flow stop-rotor is capabl&®OL with ability to transition from helicopter tairplane
mode and vice versa in mid-flight.

A mathematical model was developed that capturestibp-rotor dynamics in hover. It is noted that
the Stop-Rotor UAV was unstable in hover. So adind.inear Quadratic Regulator (LQR) control was
designed and implemented to stabilize the hoveranyes. This linear control works when the initial
conditions were small and nonlinear effects weresignificant. The linear control achieved ‘locatability
and may not work for all large disturbances oriahitonditions. In order to ensure ‘global’ stitlila
Lyapunov approach based nonlinear controller wasgded and implemented on the nonlinear plant. The
domain of attraction for this nonlinear controlleas much higher than the linear controller.

It is anticipated that this work would serve as tbendation to develop a complete autonomous
multimode Stop-Rotor UAV. The future work can ind&u simulating the transition equations, design
controller for transition dynamics and detailed Ineahatical analysis that relaxes the assumptiortsibee
used while deriving the equations of motion, to tiena few.
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