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1. INTRODUCTION

In modern digital communication systems, the traesion of high-speed data through a channel is
limited by intersymbol Interference (I1SI) causeddigtortion in the transmission channel. High-spdath
transmission through channels with severe distortan be achieved by designing an equalizer in the
receiver that counteracts the channel distortioqractice, the channel is time varying and is unkmin the
design stage due to variations in the transmissiedium. Thus, we need an adaptive equalizer thoatiges
precise compensation over the time-varying chaandlattempts to recover the transmitted symbols.

The most frequently used structure of equalizea tsansversal adaptive filter with an appropriate
algorithm such as least mean square (LMS), receitsst squares (RLS), or QR-Decomposition-Basest le
squares lattice filter (QRD-LSL) [1]. The perforntas of the RLS and QRD-LSL algorithms are not
dependent on the eigenvalue spread of covariantéxnsince the covariance matrix is inverted dikg€l].

On the other hand, the LMS algorithm suffers frdowsconvergence in the case of large eigenvalueasbr
of the sample covariance matrix. However, thes@t@dasignal processing techniques employ largebarm
of iterations to carry out channel equalization a&meteby make their applications in real life plotive as
they are computationally too expensive and are itaida for a fast dynamically changing channel teesyt
require a latent time to collect the training dgth The convergence rate can be accelerated bytte
conjugate gradient (CG) method [3]. The goal of {3Go iteratively search for the optimum solutiop b
choosing perpendicular paths for each new iteratitmwever, the above mentioned algorithms are based
the steepest descent algorithm, which is easy péeiment but do not perform satisfactorily undermhipise
condition.
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An online estimation of the channel and of the @oiariance using a network of adaptive Kalman
filters is presented in [4]. Other channel equdilima approaches are based on nonlinear estimasorgu
Neural networks [5]. However, most neural netwanke the MSE as the cost function to be minimized by
the network. The problems encountered by using ahenetworks in equalization are the slow rate of
convergence and the possibility that the networ&sdwot reach the optimum MSE. On the other wotds, t
network can get stuck in a local minimum. In thisse, the network will not be able to optimize its
parameters to the least MSE especially under hijgercondition.

In this paper, a GA-based adaptive equalizatiodeigeloped to solve these limitations. Genetic
algorithm is based upon the process of naturalcgete and does not require gradient statistics. aAs
consequence, a GA is able to find a global errarirmim [6-7]. Moreover, the GA with small population
size and high mutation rates can find a good smiutast [8]. The organization of this paper is alfofvs.
Section Il, introduces the adaptive channel egatitin system model and formalize the problem optda
algorithms. In Section Ill, a channel equalizerézth®n GA approach is presented. Simulation resulis
given in section IV and conclusions drawn in Sathb

2. BACKGROUND

The structure of the adaptive channel equalizeedvas LMS algorithm is shown in Fig.1. As
illustrated in figure, the received signal y(n)ifferent from the original signal x(n) because&viés distorted
by the overall channel transfer function C(z), whiocludes the transmit filter, the transmissiondinen,
and the receive filter. To recover the originalnsigx(n), we need to process y(n) using the egeiali¥(z),
which is the inverse of the channel’s transfer fiomcC(z) in order to compensate for the channgtodiion.
That is, we have to design the equalizer

1
W(2)=——, 1
(2 o M)

such that Xn) = x(n). As shown in Fig.1, an adaptive filtequires the desired signal d(n) for computing the
error signal e(n) for the LMS adaptive algorithm.

During the training stage, the adaptive equalizeafficients are adjusted by transmitting a short
training sequence. This known transmitted sequénadso generated in the receiver and is used @s th
desired signal d(n) for the LMS algorithm. Afteetkhort training period, the transmitter begingramsmit
the data sequence. In the data mode, the outpheafqualizer Xn) is used by a decision device to produce
binary data. Assuming that the output of the deaislevice is correct, the binary sequence can ba as the
desired signal d(n) to generate the error signa) &fr the LMS algorithm. The signal samples at the
equalizer input are of the form:

N-1

y(n) =D h()x(n=j) +v(n)
=0

(2)

wherex(n) denotes the data sample at time ingex/(n) is the additive noise with the variamzé, andh(j)
is the channel impulse response. The data sangieoh values of(n) = +1, and the noise is assumed to be
independent.

x(n)

Figure. 1 Cascade of channel with LMS channel ezgal
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The equalizer output is:
x(n) =w' (n)x(n) 3)

where x(n) =[x(n), x(n-1), x(n—2),..x(n— N +1)]" is the vector of data sample at the equalizertjrgud
w(n) =[w(n), \n-1), mn-2,..wmn- N +1)]" is the vector of weighting coefficients of the athepfilter.

The outputk(n)is used in estimating the transmitted data symgot K), with K denoting the
delay. Then—th output error sample is:

&n) = X(n) = x(n-K) 4
The weighting coefficients in the LMS algorithm angdated according to the following expression [1]:
w(n+1) = w(n) + e (Nx(n) (5)

Here,u is the step size which controls the rate of coreecg of the LMS algorithm. The output mean
square error (MSE) is:

e(n) = He*(n] =w" (MR(Mw(n) + E[x*(M] -2w " () EXr)x(n-K)] (6)

1 N
where R :—Zx(n)x(n) . The average output MSE afterth iteration can be expressed as:
n=1

Eaurg(N) = £(N) + E[VT (N)RV(N)] ()

wheree(n)is the minimum MSE as given by (6) for optimal weigg coefficients vectaw ,, (n), i.e.
Wiener vector antf (n) = w(n)-w,, (n) is the weighting coefficient error vector. In thieeady state, the
MSE aboves(n) in (7) is known as the excess MSE. The weigh{ty do not reach to their optimum values
due to the mean square error (MSE) being trappéalctd minimum. In other words true Weiner solutisn
not achieved because of gradient based training. Aitkerror-rate (BER) performance of the equalizer
further degrades when data transmission takes fiacegh channels.

One of the main drawbacks of the adaptive algortiisrthat the algorithms must go through many
iterations before satisfactory convergence is age This means they suffer from long training tiare
undesirable excess MSE during training. The exddS& can increase significantly under high noise
condition which means that the adaptive algoritfmased on steepest descent can get stuck in a local
minimum and therefore there is possibility thatidgrtraining of the equalizers, its weights do redch to
their optimum values due to the excess MSE. Toarethis problem, a GA is proposed which is esa#nti
does not require gradient based training algoriéisrshown in the following section.

3. GA-BASED CHANNEL EQUALIZATION

The LMS, and RLS based channel equalizers aim tormiie the ISI present in the linear dispersive
communication channel. These are gradient basedihggalgorithms and therefore there is possibilitgt
during training mode of the channel equalizerwtights do not reach to their optimum values duéh&o
mean square error (MSE) being trapped to localmnimi. In this section we propose a new adaptive radlan
equalizer using GA optimization technique whicheissentially a derivative free optimization tool.igh
algorithm is used to update the weights of the kzxpraas explained in the following steps:

1. Simulate the signals as illustrated in Fig.2. lis igure, the random-number generator 1 provithes t
test signak(n) used for probing the channel, whereas random-nugdrgerator 2 serves as the source of
additive white noise/(n) that corrupts the channel output. The GA basegtadgaequalizer has the task
of correcting for the distortion produced by theachel in the presence of the additive white noise.
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Random-number generator 1, after suitable delag slipplies the desired respod$e) applied to the

GA based equalizer in the form of a training segeei his system is simulated as follows:

¢ Simulate some useful signal to be transmitted lryygusandom bipolar (-1,1) sequence, i.e.,
%generate the input sequence x(n).
x=rand(1,data_length);
index1=find(x>0.5);
index2=find(x<=0.5);
x(index1)=1;
x(index2)=-1,

« Each of the input data samples is passed throughcliannel and then contaminated with the
additive noise of known variance? (where its variance is determined by the desiigdas-to-
noise ratio). The resultant signal is passed thiahg equalizer. In this way N numbers of desired
signals are produced by feeding all the N inputgam
%generate noise v(n)
v=sqrt(0.001)*randn(1,data_length);

%input signal
u=filter(channel,1,x)+v;
%desired input, d(k). The filter will result in ldy of 7 samples.
d=filter([zeros(1,7) 1],1,x);
« The impulse response of the channel is describebtéyaised cosine [1]
%filter length
M=11;
%channel parameter W
W=3.5; %corresponds to high channel distortion
% create a 5 tap channel impulse response.
channel=[0 0.5*(1+cos(2*pi*(-1:1)/W)) 0]; (8)
where the parameter W controls the amount of aogsitdistortion by the channel, with the
distortion increasing with W.

2. Let the structure of the equalizer is a finite ingguresponse digital filter whose coefficients iaigally
chosen from a population of M chromosomes. Eaclorobsome constitutes NL number of random
binary bits, each sequential group of L-bits repntne coefficient of the adaptive model, wheries N
the number of parameters of the model. The GA igaaative update algorithm and each chromosome
requires its fitness to be evaluated individudllgerefore, N separate solutions need to be assepsed
the same training set in each training iteration.

3. Each of the desired output is compared with conrdmg channel output and K errors are produced.
The mean square error (MSE) for a given group o&mpeters (corresponding to nth chromosome) is
determined by using the relation

MSE(n) = %Z{(:le,f . This is repeated for N times. The MSE(n) is mizied such that the adaptive

filter based GA approximates the inverse of channel

4. Since the objective is to minimize MSE (n), n=1No the GA based optimization is used. The GA
operates on the basis that a population of possibligtions (chromosomes) is used to assess the cost
surface of the problem. The GA evolutionary proogssates a new generation of solutions by crossing
two chromosomes. The solution variables or genasptovide a positive contribution to the populatio
will multiply and be passed through each subsequmteration until an optimal combination is
obtained. The population is updated after eachniegrcycle through three evolutionary processes:
selection, crossovesind mutation These create a new generation of solution vasablheselection
function creates a mating pool of parent solutimimgs based upon tHsurvival of the fittest'triterion.
From the mating pool therossoveroperator exchanges gene information. This essbntiebsses the
more productive genes from within the solution gapan to create an improved, more productive,
generation Mutation randomly alters selected genes, which helps prepssthature convergence by
pulling the population into unexplored areas of sbé&ution surface and adds new gene informatiom int
the population [6].

5. In each generation the minimum MSE is stored wkilobws the learning behavior of the adaptive model

from generation to generation.

When the minimum MSE has reached a pre-specifiezl the optimization is stopped.

7. At this step all the chromosomes attend almost tidaingenes, which represent the desired filter

coefficients of the equalizer.

o
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Figure 2. System model of adaptive channel equdtiased GA

4, SIMULATION RESULTS

In this section, we study the performance of a §ifirag adaptive equalizer for an ITU V.29 modem
under various channel conditions. This modem opsrah the general switched telephone network Iés.
use the LMS, RLS, and GA algorithms for the adaptegualization of a linear dispersive communication
channel. This channel produces unknown ISI (distoytas was illustrated in section Ill. The blodlgram
of the system used in this work was depicted inZighe equalizer has 11 taps. The impulse respainbe
channel was defined by Eg. (8). In training mode ¢hannel input after a delay of seven samplesigesv
the desired response for the equalizer. For the BMBRLS algorithms, we choose step-gize 0.075 and
exponential weighting factdar= 1. These values gf andA assure the convergence of the adaptive equalizer
in the mean square for both channel conditions {ae both values of W=2.9 and W=3.5). While binary
coded GA parameters include a population size (M3Q the total number of bits used to represechea
chromosome = 120 (i.e. 15 bits per variabRnin= -2; Rmax= 2 (whereRminand Rmaxrepresents the
range or boundary values), a probability of crogsov 0.9 and a probability of mutation = 0.03. The
tournament selection is used which is followedwsg-point crossover.

The simulation result is in three parts: In pathé signal-to-noise ratio is high (SNR=30dB), imtpa
2 it is low (SNR=10dB), and in part 3 it is verywo(SNR=0dB). In all parts of the simulation, the
performance of the equalizer is tested under diffechannel conditions (channel with high distertighich
corresponds to channel parameter W=3.5 or low distocorresponds to channel parameter W=2.9).

Part 1: The simulation results for a fixed SNR=30¢H®uivalently, variances? = 0.001) and
different values of channel parameter W are shawhig.3. This figure presents a comparison of tHeEV
performance of the GA to three other algorithme, dptimum Weiner Solution, the standard LMS aldonit
and the recursive least-squares (RLS) algorithroaft be seen that the LMS algorithm consistenthabes
worst, in that it exhibits the slowest rate of cergence, the greatest sensitivity to variationthéparameter
W, and the largest excess MSE. Also, note thaiRb8 algorithm consistently achieves the fastest ot
convergence and the smallest excess MSE, withetist bensitivity to variations in the channel patmW.
Most importantly, however, the MSE performancehaf GA is closer to that advantage of the RLS alfyori
than that disadvantage of the standard LMS algoritNote also, for low channel distortion (W=2.9et
performance of the GA is very close to optimum 8ofu

Part 2: SNR=10dB (equivalently, variamge= 0.1). Fig.4 shows the MSE performances for
aforementioned algorithms for W=2.9 and W=3.5. fas@s the rate of convergence is concerned, we see
that the GA and RLS algorithms perform in rougtig same manner, both requiring about 50 iterations
converge. The performance of the LMS algorithmrisatisfactory especially for channel parameter \&=3.
See that increasing the channel parameter W hasffiet of slowing down the rate of convergencehaf
adaptive equalizer and also increasing the stetadg-galue of the average squared error.

Part 3: In this case, the SNR measured at the ehatput was 0dB. The MES performance of the
GA and RLS algorithms are shown in Fig.5. Undes tbondition, the LMS algorithm exhibit very large
fluctuations and become instable. The result ptesein Fig.5 clearly shows the superior performasicéne
GA over the RLS algorithm. The mean squared eiliggrad is minimized such that the GA approximates th
inverse of channel.
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Finally the performance of the equalizers is coragdy plotting the Bit-error-rate (BER) graphs

(see Fig. 6). It can be seen that, for less nofgnoel conditions, the LMS and GA equalizers penfor
almost similarly. However, under high noise charoweliditions, the GA equalizer outperforms its LM&la

RLS counterparts.
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5. CONCLUSIONS

The standard adaptive algorithms such as LMS, difl &e associated with local minima problem
when they are used to train the weights of the kzpra. The use of these algorithms in the desifjn o
adaptive equalizer at times fails to provide satigiry performance. To alleviate these limitatiahg paper
proposes the use of derivative free optimizatiarthtéques such as Genetic Algorithm. It can alsased
with Particle Swarm Optimization (PSO) techniquéeTperformance of the GA-based channel equalizer is
obtained and compared with standard adaptive algosi. It is found that retaining the same BER
performance, the GA-based channel equalizer tassel convergence rate (it requires about 50 ibasato
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converge) as compared to the convergence rateedffey the standard LMS algorithm (it requires mibian
100 iterations to converge).
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