
International Journal of Electrical and Computer Engineering (IJECE) 
Vol.2, No.6, December 2012, pp. 766~773 
ISSN: 2088-8708 �     766 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJECE 

The new method of Extraction and Analysis of Non-linear 
Features for face recognition 

 
Ali Mahdavi Hormat*, Karim Faez**, Zeynab Shokoohi* , Mohammad Zaher Karimi*  

* Departement of Electrical and Computer Engineering, Qazvin Branch, Islamic Azad University 
** Departement of Electrical Engineering, Amirkabir University of Technology 

 
 

Article Info  ABSTRACT  

Article history: 

Received Jul 28, 2012 
Revised Nov 19, 2012 
Accepted Nov 28, 2012 
 

 In this paper, we introduce the new method of Extraction and 
Analysis of Non-linear Features (EANF) for face recognition based 
on extraction and analysis of nonlinear features i.e. Locality 
Preserving Analysis. In our proposed algorithm, EANF removes 
disadvantages such as the length of search space, different sizes and 
qualities of imagees due to various conditions of imaging time that 
has led to problems in the previous algorithms and removes the 
disadvantages of ELPDA methods (local neighborhood separator 
analysis) using the Scatter matrix in the form of a between-class 
scatter that this matrix introduces and displayes the nearest neighbors 
to K of the outer class by the samples. In addition, another advantage 
of EANF is high-speed in the face recognition through miniaturizing 
the size of feature matrix by NLPCA (Non-Linear Locality 
Preserving Analysis). Finally, the results of tests on FERET Dataset 
show the impact of the proposed method on the face recognition. 
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1. INTRODUCTION 

The subspace learning methods have been considered according to their position in the pattern 
classification of the machine vision and learning in recent years. Whithin the past two decades, many 
subspace learning methods have been suggested for face recognition; These methods are generally divided 
into two categories: The first category is the learning methods with the supervisor and the second one is 
without the supervisor[2-11]. 

In this paper, we propose a new method for the analysis of extracting nonlinear features. This 
method reduces the dimensions of feature matrix to 3 * N (N is the number of image samples) and also to 
demonstrate the problem of size in the smaller samples, our objective function includs the separator matrix of 
within-class scatter feature. The results performed on the FERET Dataset shows the impact of EANF 
method. 

 
 
2. LOCAL NEIGHBORHOOD SEPARATOR ANALYSIS 

We consider the set of X = [x1, x2, · · ·, xN] as the example of class C {ω1, ω2, · · ·, ωC} when xi 
∈ Rn. Subspace learning methods try to find the transfer function Φ, so that the transformation from n-
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dimensional space to the d-dimensional space (d «n) is possible through minimizing or maximizing the 
objective function when yi ∈ Rd.  

the transformation function Φ is equal to yi = ΦT xi. In the way that the dimensions of space reduces 
for between-class scatter matrix and increases for within-class scatter matrix.The structure of the between-
class scatter matrix and within-class one is, respectively as following : 
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σ has also been experimentally determined. 

 Given the use of the linear PCA, ELPDA method has two problem: the high volume of feature 
vector and especial matrix error in the restoration of the original amount of matrix, which is solved using 
NLPCA. This function has selected all linear and non-linear parts and led to remove the additional parts and 
high precision in chosing the components, so we will have a high speed in face recognition.[23-24] 

Linear transformation have poor performance in the separation of data for which their classes do not 
inherently become linearly separated. Like PCA, non-linear locality preserving component analysis 
(NLPCA) is used to determine and reduce the correlation of the data. PCA method defines the linear 
correlation between the features , but NLPCA defines the linear and non-linear correlation between the 
features, regardless of nonlinear nature of the data.  In NLPCA method, a  neural network has been taught for 
determining the non-linear mapping.[20,23-25] 

 
 

 

 
Figure 1. features of linear PCA and NLPCA in 5 level of  force level 

 



      �          ISSN: 2088-8708 

IJECE  Vol. 2, No. 6,  December 2012 :  766 – 773 

768

The analysis of original nonlinear components (NLPCA) is as a nonlinear generalization for the 
standard method of the analysis of original components (linear) (PCA). So far, many of these generalizations 
relied on one type of learning. Here, we suggest a algorithm for face recognision in which the extension from 
PCA to NLPCA is conducted through a deflationary type of learning [23-24]. 

When using any type of linear and non-linear analysis (PCA), it is important that their applications 
on the reduction of dimension and correct identification of the specific set of features based on the specific 
criteria be distinguishable. In the first set of applications, just subspace with the power of high description 
appears with emphasis on compressing and having no noise for the data. 

It is no need for all features to be unique. The only necessary condition is that the mentioned 
subspace explains the mean square error (MSE) of  information available in the data. 

Implementation of a hierarchical algorithm PCA has two important properties i.e. the scalability and 
stability. The first one implies its ability to easily respond to increase in the amount of workload or shows the 
amount of system preparation for increasing in workload. For example, the scalability points out the system's 
ability to increase the overall performance while adding resources (e.g dimensions), distinguishable to the 
second one means that the ith features from n features to have i solution for m features, in the way that (m ~ = 
n), then it reaches the equilibrium state and we are able to recover the original matrix, linear autoencode 
extracts and other features on the remaining error variance through training deflationary features. However, 
this method does not perform well enough in the non-linear one. The remaining variance can not be 
considered without regarding to non-linear vector mapping [15]. As the above figure shows, linear PCA loses 
some areas and selects a large interval for itself that will lead to an increase in the complexity. 
 
 
3. CONVERTING LINEAR TO NON-LINEAR PCA   

The expansion of linear autoencoder includes non-linear mappings which accures through adding 
non-linear hidden layers. In Figure 2, you see this strategy being the analysis network of the original non-
linear components analysis (NLPCA) in its heart[18,19]. 

 
 

 
Figure 2. coding and decoding of  nodes by mapping [3-4-2-4-3] 

 
 

There are two general ways to introduce the extraction method of non-linear features in the feature 
space. First, the ith featur is used to calculate the highest ith variance like linear PCA. The second strategy is to 
search for the space of original data for the smallest mean squared error for the ith feature. Finding a solution 
for the first strategy is much more difficult than that for the second one. Calculation of formula of MSE 
(mean squared error) is as following [21]: 
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Where x and ᶺx are the original and complimented data, respectively, n is the number of samples and 

d is dimention. All results can be generalized to any other dimension. E1 and E1, 2 are  the average errors 
when they are calculated only using one or two features. To performe h-NLPCA, we require the minimum 
value of E1 and E1, 2 and we can create hierarchical method through minimizing the error: 

 

EH = E1 + E1,2        (6)       
 

However, we must obtain a balance between the value weights values for E1 and E1, 2 with the α 
parameter: 

 
E H = αE1 + E1,2   ;             α∈(0,∞)        (7)     
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Yet, for optimal selection of component α with the costs of computations, when α goes toward 1, it 

increases as it is shown in Figure 3.  
 

 
Figure 3. Dependent of errors by α component, for encoding ANN nodes with mapping [19-20-2-20-19]  in 

5 levels of s-NLPCA, while is in E1 error α close to zero and in the E1 error α close to ∞ 
 
 

To train the h-NLPCA, the error value of E1 and E1, 2 are separately calculated using a descending 
gradient, in each training iteration. This method in s-NLPCA is calculated by the network with one or two 
neurons in the features layer. 

That respectively, the gradient of rEH is equal to the sum of rE1,2 + rE1 =rEH and the reduction of 
weight is calculated as the following sum: 

 

E = EH + ν Pi w2
i        (8)      

 
In most experiments, v = 0.001 is a good choice. In addition, the weight of non-linear layer is 

initialized to achieve more optimal results, so that the sigmoidal works nonlinearity in a linear system as non-
linearity which is related to the starting point of h-NLPCA network with the simple solution of PCA. 
 
 
4. RESULTS AND ANALYSIS 

      In this section, it is explained the results of research in two subchapter and  given the comprehensive 
discussion. 

 
4.1 Accuracy of Classification 

The performed test includes the NLPCA features for the accuracy of classification. Here, we have a 
set of 50-dimensional samples that belongs to two classes with two levels of classification including image 1 
and 2, and samples from A and B classe s[27]. 

 
 

Table 1.error rate for testing data by PCA and NLPCA 
Classification of '1' to '2'  

20 10 3 2 1 Features 
- - 30/3 30/3 40/6 PCA 
- - - 38/3 48/5 NLPCA 

Classification of 'A' to 'B'  
20 10 3 2 1 Features 
- - 32/0 50/0 48/3 PCA 
- - - 50/0 50/0 NLPCA 
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The non-linear quadratic equation is used to convert the non-linear data. According to Table 1, it is 
clear that each of which requires two features for each image and the other 3 rows are for the general 
specifications of the feature matrix. In both classification methods, NLPCA gives the best results for the 
smallest component. As it was said, the linear PCA has produced a weak classification [22, 26, 28]. 

 
 

(linear) PCA               NLPCA 

 
 

Figure 4.The result of linear PCA and NLPCA is noise of image 
 

 
4.2 Testing EANF method for face classification 

In this section, we compare the performance of the proposed EANF method for the FERET face 
Dataset. FERET face Dataset is the standard dataset in the evaluation of face recovery techniques including 
14126 images out of 1199 persons. Also, our selected subset includes 1131 images out of 229 persons [14]. 

All images have been rotated and measured in two subsets, therefor; the center of eyes has been 
located on specific pixels and then changed into 32 * 32 pixels. The training stages includes 20 iteration and 
the simplest classifier is the nearest neighbor.  

 

 
Figure 5.images of FERET dataset 

 
4.2.1   Selecting EANF Parameter 

In EANF, the number of neighbors close to the outer class K must be specified, to produce between-
class scatter matrix, and any image should have different labels that this leads to high performance. To prove 
this technique, we study the effects of neighboring k on the base rate of recognition on the images in the 
FERET Dataset: In this experiment, 4 samples have been selected for each training class. it is clear in the 
figure, the curve of recognition rate can be obtained through changing k from 1 to 50 and it will be maximum 
when k = 1[13]. 

 
 

 
 

Figure 6. recognition rate and k parameter 
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In similar experiments with various training samples on FERE Database, when k = 1, EANF method 
always shows the most important recognition rate. 

 
4.2.2    Tests on subsets of face recognition 

In this section, we use the proposed EANF using five randomly subspace learning algorithm-LDA, 
PCA [1], NLDA, ELPDA (LDA empty space) and LPDA, with various number of images of each person for 
testing. In the following figure, the results of comparing the recognition rate in every 6 algorithms on FERET 
Dataset are shown. In table 2, the best recognition rate of six algorithms have been shown given that the 
number of dimensions are the same and the results considerably show the most optimal performance for 
EANF method. 
 
 

 
Figure 7. recognition rate of images of FERET dataset 

 
 

Table 2. recognition rate of images of FERET dataset 
LDA PCA Train 

61/8±1/95(109) 54/9±1/39(457) 2 

68/9±2/44(228) 62/5±1/92(556) 3 

ELPDA LPDA Train 

69/0±1/62(289) 67/7±1/60(61) 2 

82/5±1/56(186) 78/7±1/87(85) 3 

NLPCAELPDA NLDA Train 

67/7±1/60(61) 70/5±1/47(228) 2 

89/5±1/56(186) 78/2±1/96(228) 3 

 
 
 

5. CONCOLUSION  
In this paper, we presented a new method based on selecting a set of features of a set through the 

nonlinear PCA (NLPCA) (images with different dimensions) so that we will be able to improve the 
calculation speed of the features, decreasing dimension and high precision than the linear method, we can 
classify the available images with low error, higher speed and also any size without performing additional 
calculations than other algorithms. we showed, this algorithm will have better results than those by other 
methods. 
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